GRV II final with answers.

- 1. Let R be an integral domain and let $r \in R$ be not zero and not a unit.
 - (a) Give definition of: p is prime.

 $p|ab \Longrightarrow p|a \text{ or } p|b$

(b) Give definition of: p is irreducible.

 $p = ab \Longrightarrow a$ is a unit or b is a unit (which implies that the other is an associate of p).

(c) Which one (prime or irreducible) implies the other one?

Prime \implies irreducible. If p = ab and p is prime then p|a or p|b. Assume p|a (the case p|b is the same). Then a = pr for some r. Then $p \cdot 1 = ab = p \cdot rb$ but then rb = 1 (the cancellation law holds in an integral domain) so then b is a unit.

2. Let $f \in \mathbb{Q}[x]$ be monic and not constant. Suppose that $e^2 = e$ has only two solutions in the ring $\mathbb{Q}[x]/(f)$. Show that $f = g^d$ for some $d \ge 1$ and some irreducible $g \in \mathbb{Q}[x]$.

If f is not of this form then we can factor f = gh with g, h not constant and coprime. Then $\mathbb{Q}[x]/(f) \cong \mathbb{Q}[x]/(g) \times \mathbb{Q}[x]/(h)$ by the Chinese Remainder Theorem, and in that latter ring the equation $e^2 = e$ has > 2 solutions: (0,0), (0,1), (1,0), and (1,1).

- 3. Let p be a prime number.
 - (a) Up to isomorphism, how many \mathbb{Z} -modules exist with precisely p^4 elements? List all.

There are *five* partitions of 4, namely: 4, 1+3, 2+2, 1+1+2, and 1+1+1+1 which correspond to: $\mathbb{Z}/(p^4)$, $\mathbb{Z}/(p) \times \mathbb{Z}/(p^3)$, $\mathbb{Z}/(p^2) \times \mathbb{Z}/(p^2)$, $\mathbb{Z}/(p) \times \mathbb{Z}/(p) \times \mathbb{Z}/(p) \times \mathbb{Z}/(p) \times \mathbb{Z}/(p)$.

(b) Up to isomorphism, how many $\mathbb{F}_p[x]$ -modules exist with precisely p^4 elements?

Let $R = \mathbb{F}_p[x]$ then by the classification of modules over a PID we find that these modules are of the form $R/(a_1) \oplus \cdots \oplus R/(a_k)$ with a_i monic, $a_1|a_2|\cdots$ and the degrees of the a_i being a partition of 4. Partitions:

4 = 4: p^4 choices $(a_1$ is an arbitrary monic degree 4 polynomial) 4 = 1+3: p^3 choices $(p \text{ for } a_1 \text{ and } p^2 \text{ for } a_2 = \text{deg} 2 \cdot a_1)$ 4 = 2+2: p^2 choices $(a_1 = a_2 \text{ is an arbitrary monic deg2 poly)}$ 4 = 1+1+2: p^2 choices $(p \text{ for } a_1 = a_2, \text{ and } p \text{ for } a_3 = \text{deg} 1 \cdot a_1)$ 4 = 1+1+1+1: p choices for $a_1 = a_2 = a_3 = a_4$. Total: $p^4 + p^3 + 2 \cdot p^2 + p$ choices.

- 4. Let K be the splitting field of $x^6 2$ over \mathbb{Q} .
 - (a) What is $[K : \mathbb{Q}]$? Explain.

The field $F := \mathbb{Q}(\sqrt[6]{2})$ has degree 6 over \mathbb{Q} because $x^6 - 2$ is irreducible (Eisenstein) over \mathbb{Q} . The splitting field of $x^6 - 2$ also contains ζ_6 , which has degree $\phi(6) = 2$ over \mathbb{Q} . Then ζ_6 also has degree 2 over Fbecause $\zeta_6 \notin \mathbb{R} \supset F$. So the splitting field $K = F(\zeta_6) = \mathbb{Q}(\sqrt[6]{2}, \zeta_6)$ has degree $6 \cdot 2 = 12$ over \mathbb{Q} .

(b) How many subfields E does K have with $[E:\mathbb{Q}] = 4$?

If $[E : \mathbb{Q}] = 4$ then $[K : E] = \frac{12}{4} = 3$.

The 6 complex roots of $x^6 - 2$ are vertices of a regular hexagon, and the Galois group $G = \langle \sigma, \tau \rangle$ acts on these 6 roots as $D_{2.6}$, where $\tau =$ complex conjugation (acts as a reflection, fixed field is F) and where σ sends ζ_6 to itself and sends $\sqrt[6]{2}$ to $\zeta_6 \sqrt[6]{2}$ (this acts as a rotation of order 6).

The dihedral group $D_{2\cdot n}$ contains n rotations (whose orders are divisors of n) and n reflections (those have order 2). The group $D_{2\cdot 6}$ has only 2 elements of order 3, namely namely σ^2 and σ^4 . So there is only subgroup of order 3, namely $<\sigma^2 >$ and hence there is only **one** subfield E with [K:E] = 3.

(Note: $\langle \sigma^2 \rangle$ is a normal subgroup so E should be Galois over \mathbb{Q} . Indeed: $E = \mathbb{Q}(\sqrt{2}, \zeta_6) = \mathbb{Q}(\sqrt{2}, \sqrt{-3})$.)

- 5. Let p be a prime number > 2 and let $K = \mathbb{Q}(\zeta_p)$.
 - (a) Show that K has precisely one subfield F with [K:F] = 2.

K is Galois over \mathbb{Q} with group $G = (\mathbb{Z}/(p))^* \cong C_{p-1}$. A cyclic group G with even order has precisely one subgroup $\langle \tau \rangle$ of order 2 (F is the fixed field of $\langle \tau \rangle$).

(b) Show that K has precisely one subfield E with $[E : \mathbb{Q}] = 2$.

A cyclic group G with even order p-1 has precisely one subgroup H of order (p-1)/2 (E is the fixed field of H).

(c) Show that $E \subset \mathbb{R}$ if and only if $p \equiv 1 \mod 4$.

 $E \subseteq \mathbb{R}$ if and only if E is fixed under τ (= complex conjugation). $E = K^H$ is fixed under τ if and only if $\tau \in H$. But H is cyclic of order (p-1)/2 so it contains τ if and only if (p-1)/2 is even.

6. Let K/\mathbb{Q} be Galois with group G and let $b \in K$ with $b \neq 0$. Show that there exists $\sigma \in G$ with $\sigma(b) = -b$ if and only if $b \notin \mathbb{Q}(b^2)$.

Let $E_1 = \mathbb{Q}(b)$ and $E_2 = \mathbb{Q}(b^2)$. Since K is Galois over \mathbb{Q} , it follows that E_1, E_2 are fixed fields of some groups H_1, H_2 of G. Now $H_1 \subseteq H_2$ because $E_2 \subseteq E_1$, and both \subseteq are an equality if and only if $b \in E_2$.

If σ sends b to -b and $b \neq 0$ then $\sigma \notin H_1$ but $\sigma(b^2) = (-b)^2 = b^2$ so $\sigma \in H_2$. Then $H_1 \neq H_2$ so $b \notin E_2$.

Conversely, if $b \notin E_2$ then $E_1 \neq E_2$ so $H_1 \subsetneq H_2$ so there exists $\sigma \in H_2$ with $\sigma \notin H_1$. That means $\sigma(b^2) = b^2$ and $\sigma(b) \neq b$, which must then differ by a minus sign since their squares are the same.