GRV II final with answers.

1. Let R be an integral domain and let $r \in R$ be not zero and not a unit.
(a) Give definition of: p is prime.
$p|a b \Longrightarrow p| a$ or $p \mid b$
(b) Give definition of: p is irreducible.
$p=a b \Longrightarrow a$ is a unit or b is a unit (which implies that the other is an associate of p).
(c) Which one (prime or irreducible) implies the other one?

Prime \Longrightarrow irreducible. If $p=a b$ and p is prime then $p \mid a$ or $p \mid b$. Assume $p \mid a$ (the case $p \mid b$ is the same). Then $a=p r$ for some r. Then $p \cdot 1=a b=p \cdot r b$ but then $r b=1$ (the cancellation law holds in an integral domain) so then b is a unit.
2. Let $f \in \mathbb{Q}[x]$ be monic and not constant. Suppose that $e^{2}=e$ has only two solutions in the ring $\mathbb{Q}[x] /(f)$. Show that $f=g^{d}$ for some $d \geq 1$ and some irreducible $g \in \mathbb{Q}[x]$.
If f is not of this form then we can factor $f=g h$ with g, h not constant and coprime. Then $\mathbb{Q}[x] /(f) \cong \mathbb{Q}[x] /(g) \times \mathbb{Q}[x] /(h)$ by the Chinese Remainder Theorem, and in that latter ring the equation $e^{2}=e$ has >2 solutions: $(0,0),(0,1),(1,0)$, and $(1,1)$.

3 . Let p be a prime number.
(a) Up to isomorphism, how many \mathbb{Z}-modules exist with precisely p^{4} elements? List all.

There are five partitions of 4 , namely: $4,1+3,2+2,1+1+2$, and $1+1+1+1$ which correspond to: $\mathbb{Z} /\left(p^{4}\right), \mathbb{Z} /(p) \times \mathbb{Z} /\left(p^{3}\right), \mathbb{Z} /\left(p^{2}\right) \times$ $\mathbb{Z} /\left(p^{2}\right), \mathbb{Z} /(p) \times \mathbb{Z} /(p) \times \mathbb{Z} /\left(p^{2}\right)$, and $\mathbb{Z} /(p) \times \mathbb{Z} /(p) \times \mathbb{Z} /(p) \times \mathbb{Z} /(p)$.
(b) Up to isomorphism, how many $\mathbb{F}_{p}[x]$-modules exist with precisely p^{4} elements?
Let $R=\mathbb{F}_{p}[x]$ then by the classification of modules over a PID we find that these modules are of the form $R /\left(a_{1}\right) \oplus \cdots \oplus R /\left(a_{k}\right)$ with a_{i} monic, $a_{1}\left|a_{2}\right| \cdots$ and the degrees of the a_{i} being a partition of 4 . Partitions:
$4=4: p^{4}$ choices (a_{1} is an arbitrary monic degree 4 polynomial)
$4=1+3: p^{3}$ choices $\left(p\right.$ for a_{1} and p^{2} for $\left.a_{2}=\operatorname{deg} 2 \cdot a_{1}\right)$
$4=2+2: p^{2}$ choices ($a_{1}=a_{2}$ is an arbitrary monic deg2 poly)
$4=1+1+2: p^{2}$ choices $\left(p\right.$ for $a_{1}=a_{2}$, and p for $\left.a_{3}=\operatorname{deg} 1 \cdot a_{1}\right)$
$4=1+1+1+1: p$ choices for $a_{1}=a_{2}=a_{3}=a_{4}$.
Total: $p^{4}+p^{3}+2 \cdot p^{2}+p$ choices.
4. Let K be the splitting field of $x^{6}-2$ over \mathbb{Q}.
(a) What is $[K: \mathbb{Q}]$? Explain.

The field $F:=\mathbb{Q}(\sqrt[6]{2})$ has degree 6 over \mathbb{Q} because $x^{6}-2$ is irreducible (Eisenstein) over \mathbb{Q}. The splitting field of $x^{6}-2$ also contains ζ_{6}, which has degree $\phi(6)=2$ over \mathbb{Q}. Then ζ_{6} also has degree 2 over F because $\zeta_{6} \notin \mathbb{R} \supset F$. So the splitting field $K=F\left(\zeta_{6}\right)=\mathbb{Q}\left(\sqrt[6]{2}, \zeta_{6}\right)$ has degree $6 \cdot 2=12$ over \mathbb{Q}.
(b) How many subfields E does K have with $[E: \mathbb{Q}]=4$?

If $[E: \mathbb{Q}]=4$ then $[K: E]=12 / 4=3$.
The 6 complex roots of $x^{6}-2$ are vertices of a regular hexagon, and the Galois group $G=<\sigma, \tau>$ acts on these 6 roots as $D_{2.6}$, where $\tau=$ complex conjugation (acts as a reflection, fixed field is F) and where σ sends ζ_{6} to itself and sends $\sqrt[6]{2}$ to $\zeta_{6} \sqrt[6]{2}$ (this acts as a rotation of order 6).
The dihedral group $D_{2 \cdot n}$ contains n rotations (whose orders are divisors of n) and n reflections (those have order 2). The group $D_{2.6}$ has only 2 elements of order 3 , namely namely σ^{2} and σ^{4}. So there is only subgroup of order 3 , namely $\left\langle\sigma^{2}\right\rangle$ and hence there is only one subfield E with $[K: E]=3$.
(Note: $\left.<\sigma^{2}\right\rangle$ is a normal subgroup so E should be Galois over \mathbb{Q}. Indeed: $E=\mathbb{Q}\left(\sqrt{2}, \zeta_{6}\right)=\mathbb{Q}(\sqrt{2}, \sqrt{-3})$.)
5. Let p be a prime number >2 and let $K=\mathbb{Q}\left(\zeta_{p}\right)$.
(a) Show that K has precisely one subfield F with $[K: F]=2$.
K is Galois over \mathbb{Q} with group $G=(\mathbb{Z} /(p))^{*} \cong C_{p-1}$. A cyclic group G with even order has precisely one subgroup $\langle\tau\rangle$ of order 2
(F is the fixed field of $\langle\tau\rangle$).
(b) Show that K has precisely one subfield E with $[E: \mathbb{Q}]=2$.

A cyclic group G with even order $p-1$ has precisely one subgroup H of order $(p-1) / 2 \quad(E$ is the fixed field of $H)$.
(c) Show that $E \subset \mathbb{R}$ if and only if $p \equiv 1 \bmod 4$.
$E \subseteq \mathbb{R}$ if and only if E is fixed under τ (= complex conjugation). $E=K^{H}$ is fixed under τ if and only if $\tau \in H$. But H is cyclic of order $(p-1) / 2$ so it contains τ if and only if $(p-1) / 2$ is even.
6. Let K / \mathbb{Q} be Galois with group G and let $b \in K$ with $b \neq 0$. Show that there exists $\sigma \in G$ with $\sigma(b)=-b$ if and only if $b \notin \mathbb{Q}\left(b^{2}\right)$.
Let $E_{1}=\mathbb{Q}(b)$ and $E_{2}=\mathbb{Q}\left(b^{2}\right)$. Since K is Galois over \mathbb{Q}, it follows that E_{1}, E_{2} are fixed fields of some groups H_{1}, H_{2} of G. Now $H_{1} \subseteq H_{2}$ because $E_{2} \subseteq E_{1}$, and both \subseteq are an equality if and only if $b \in E_{2}$.

If σ sends b to $-b$ and $b \neq 0$ then $\sigma \notin H_{1}$ but $\sigma\left(b^{2}\right)=(-b)^{2}=b^{2}$ so $\sigma \in H_{2}$. Then $H_{1} \neq H_{2}$ so $b \notin E_{2}$.
Conversely, if $b \notin E_{2}$ then $E_{1} \neq E_{2}$ so $H_{1} \subsetneq H_{2}$ so there exists $\sigma \in H_{2}$ with $\sigma \notin H_{1}$. That means $\sigma\left(b^{2}\right)=b^{2}$ and $\sigma(b) \neq b$, which must then differ by a minus sign since their squares are the same.

