GRYV 1I final with answers.

1. Let R be an integral domain and let » € R be not zero and not a unit.
(a) Give definition of: p is prime.
plab = pla or p|b
(b) Give definition of: p is irreducible.

p=ab = ais a unit or b is a unit (which implies that the other is
an associate of p).

(¢) Which one (prime or irreducible) implies the other one?

Prime = irreducible. If p = ab and p is prime then pla or p|b.
Assume pla (the case p|b is the same). Then a = pr for some r. Then
p-1=ab=p-rbbut then rb = 1 (the cancellation law holds in an
integral domain) so then b is a unit.

2. Let f € Q[z] be monic and not constant. Suppose that e? = e has only
two solutions in the ring Q[z]/(f). Show that f = g¢ for some d > 1 and
some irreducible g € Qx].

If f is not of this form then we can factor f = gh with g, h not constant and
coprime. Then Q[z]/(f) = Q[z]/(g9) x Q[z]/(h) by the Chinese Remainder
Theorem, and in that latter ring the equation e? = e has > 2 solutions:
(0,0),(0,1),(1,0), and (1,1).

3. Let p be a prime number.

(a) Up to isomorphism, how many Z-modules exist with precisely p*
elements? List all.

There are five partitions of 4, namely: 4,143,242, 1+ 1+ 2, and
1+ 1+ 1+ 1 which correspond to: Z/(p*), Z/(p) x Z/(p?), Z/(p*) x
Z/(p?), Z/(p) x Z/(p) x Z/(p*), and Z/(p) x Z/(p) x Z/(p) x Z/(p)-

(b) Up to isomorphism, how many F,[z]-modules exist with precisely p*
elements?

Let R = Fp[z] then by the classification of modules over a PID we
find that these modules are of the form R/(a1) & --- & R/(ax) with
a; monic, ajlag|--- and the degrees of the a; being a partition of 4.
Partitions:

4 = 4: p* choices (a; is an arbitrary monic degree 4 polynomial)

4 = 1+3: p? choices (p for a; and p? for ay = deg2 - ay)

4 = 2+42: p? choices (a; = ay is an arbitrary monic deg2 poly)

4 = 1+41+2: p? choices (p for a; = ag, and p for az = degl - ay)

4 = 1+1+1+41: p choices for a; = as = a3 = a4.

Total: p* + p® 4+ 2 - p? 4+ p choices.

4. Let K be the splitting field of 25 — 2 over Q.
(a) What is [K : Q]? Explain.



The field F := Q(+¥/2) has degree 6 over Q because 2°—2 is irreducible
(Eisenstein) over Q. The splitting field of 2° — 2 also contains (g,
which has degree ¢(6) = 2 over Q. Then (g also has degree 2 over F
because (g ¢ R O F. So the splitting field K = F((s) = Q(V/2, (s)
has degree 6 - 2 = 12 over Q.

(b) How many subfields E does K have with [F : Q] = 47
If [E:Q] =4 then [K: E]=12/4=3.
The 6 complex roots of % — 2 are vertices of a regular hexagon, and
the Galois group G =< 0,7 > acts on these 6 roots as Ds.¢, where
T = complex conjugation (acts as a reflection, fixed field is F') and
where o sends (g to itself and sends 2 to (6\6/5 (this acts as a rota-
tion of order 6).

The dihedral group Ds.,, contains n rotations (whose orders are di-
visors of n) and n reflections (those have order 2). The group Da.¢
has only 2 elements of order 3, namely namely o2 and o*. So there
is only subgroup of order 3, namely < o2 > and hence there is only
one subfield E with [K : E] = 3.

(Note: < 02 > is a normal subgroup so E should be Galois over Q.

Indeed: E = Q(v2,() = Q(v2,v/-3).)
5. Let p be a prime number > 2 and let K = Q({,).

(a) Show that K has precisely one subfield F' with [K : F] = 2.

K is Galois over Q with group G = (Z/(p))* = Cp_1. A cyclic group
G with even order has precisely one subgroup < 7 > of order 2
(F is the fixed field of < 7 >).

(b) Show that K has precisely one subfield E with [E : Q] = 2.
A cyclic group G with even order p — 1 has precisely one subgroup
H of order (p—1)/2 (E is the fixed field of H).

(¢) Show that E C R if and only if p = 1 mod 4.
E C R if and only if F is fixed under 7 (= complex conjugation).

E = K" is fixed under 7 if and only if 7 € H. But H is cyclic of
order (p — 1)/2 so it contains 7 if and only if (p — 1)/2 is even.

6. Let K/Q be Galois with group G and let b € K with b # 0. Show that
there exists o € G with o(b) = —b if and only if b & Q(b?).

Let E1 = Q(b) and E5 = Q(b?). Since K is Galois over Q, it follows that
FE, FEs are fixed fields of some groups Hy, Hy of G. Now H; C Hy because
E5 C FEq, and both C are an equality if and only if b € Es.

If o sends b to —b and b # 0 then o ¢ H; but o(b?) = (=b)? = b? so
o € Hy. Then H; 75 Hsy sob ¢E2

Conversely, if b € E5 then Fy # Es so Hi C Hs so there exists 0 € Hy
with o ¢ Hy. That means o(b?) = b% and o(b) # b, which must then differ
by a minus sign since their squares are the same.



