
GRV II final with answers.

1. Let R be an integral domain and let r ∈ R be not zero and not a unit.

(a) Give definition of: p is prime.

p|ab =⇒ p|a or p|b
(b) Give definition of: p is irreducible.

p = ab =⇒ a is a unit or b is a unit (which implies that the other is
an associate of p).

(c) Which one (prime or irreducible) implies the other one?

Prime =⇒ irreducible. If p = ab and p is prime then p|a or p|b.
Assume p|a (the case p|b is the same). Then a = pr for some r. Then
p · 1 = ab = p · rb but then rb = 1 (the cancellation law holds in an
integral domain) so then b is a unit.

2. Let f ∈ Q[x] be monic and not constant. Suppose that e2 = e has only
two solutions in the ring Q[x]/(f). Show that f = gd for some d ≥ 1 and
some irreducible g ∈ Q[x].

If f is not of this form then we can factor f = gh with g, h not constant and
coprime. Then Q[x]/(f) ∼= Q[x]/(g)×Q[x]/(h) by the Chinese Remainder
Theorem, and in that latter ring the equation e2 = e has > 2 solutions:
(0, 0), (0, 1), (1, 0), and (1, 1).

3. Let p be a prime number.

(a) Up to isomorphism, how many Z-modules exist with precisely p4

elements? List all.

There are five partitions of 4, namely: 4, 1 + 3, 2 + 2, 1 + 1 + 2, and
1 + 1 + 1 + 1 which correspond to: Z/(p4), Z/(p)×Z/(p3), Z/(p2)×
Z/(p2), Z/(p)× Z/(p)× Z/(p2), and Z/(p)× Z/(p)× Z/(p)× Z/(p).

(b) Up to isomorphism, how many Fp[x]-modules exist with precisely p4

elements?

Let R = Fp[x] then by the classification of modules over a PID we
find that these modules are of the form R/(a1) ⊕ · · · ⊕ R/(ak) with
ai monic, a1|a2| · · · and the degrees of the ai being a partition of 4.
Partitions:
4 = 4: p4 choices (a1 is an arbitrary monic degree 4 polynomial)
4 = 1+3: p3 choices (p for a1 and p2 for a2 = deg2 · a1)
4 = 2+2: p2 choices (a1 = a2 is an arbitrary monic deg2 poly)
4 = 1+1+2: p2 choices (p for a1 = a2, and p for a3 = deg1 · a1)
4 = 1+1+1+1: p choices for a1 = a2 = a3 = a4.
Total: p4 + p3 + 2 · p2 + p choices.

4. Let K be the splitting field of x6 − 2 over Q.

(a) What is [K : Q]? Explain.
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The field F := Q( 6
√

2) has degree 6 over Q because x6−2 is irreducible
(Eisenstein) over Q. The splitting field of x6 − 2 also contains ζ6,
which has degree φ(6) = 2 over Q. Then ζ6 also has degree 2 over F
because ζ6 6∈ R ⊃ F . So the splitting field K = F (ζ6) = Q( 6

√
2, ζ6)

has degree 6 · 2 = 12 over Q.

(b) How many subfields E does K have with [E : Q] = 4?

If [E : Q] = 4 then [K : E] = 12/4 = 3.
The 6 complex roots of x6 − 2 are vertices of a regular hexagon, and
the Galois group G =< σ, τ > acts on these 6 roots as D2·6, where
τ = complex conjugation (acts as a reflection, fixed field is F ) and
where σ sends ζ6 to itself and sends 6

√
2 to ζ6

6
√

2 (this acts as a rota-
tion of order 6).

The dihedral group D2·n contains n rotations (whose orders are di-
visors of n) and n reflections (those have order 2). The group D2·6
has only 2 elements of order 3, namely namely σ2 and σ4. So there
is only subgroup of order 3, namely < σ2 > and hence there is only
one subfield E with [K : E] = 3.

(Note: < σ2 > is a normal subgroup so E should be Galois over Q.
Indeed: E = Q(

√
2, ζ6) = Q(

√
2,
√
−3).)

5. Let p be a prime number > 2 and let K = Q(ζp).

(a) Show that K has precisely one subfield F with [K : F ] = 2.

K is Galois over Q with group G = (Z/(p))∗ ∼= Cp−1. A cyclic group
G with even order has precisely one subgroup < τ > of order 2
(F is the fixed field of < τ >).

(b) Show that K has precisely one subfield E with [E : Q] = 2.

A cyclic group G with even order p − 1 has precisely one subgroup
H of order (p− 1)/2 (E is the fixed field of H).

(c) Show that E ⊂ R if and only if p ≡ 1 mod 4.

E ⊆ R if and only if E is fixed under τ (= complex conjugation).
E = KH is fixed under τ if and only if τ ∈ H. But H is cyclic of
order (p− 1)/2 so it contains τ if and only if (p− 1)/2 is even.

6. Let K/Q be Galois with group G and let b ∈ K with b 6= 0. Show that
there exists σ ∈ G with σ(b) = −b if and only if b 6∈ Q(b2).

Let E1 = Q(b) and E2 = Q(b2). Since K is Galois over Q, it follows that
E1, E2 are fixed fields of some groups H1, H2 of G. Now H1 ⊆ H2 because
E2 ⊆ E1, and both ⊆ are an equality if and only if b ∈ E2.

If σ sends b to −b and b 6= 0 then σ 6∈ H1 but σ(b2) = (−b)2 = b2 so
σ ∈ H2. Then H1 6= H2 so b 6∈ E2.

Conversely, if b 6∈ E2 then E1 6= E2 so H1 ( H2 so there exists σ ∈ H2

with σ 6∈ H1. That means σ(b2) = b2 and σ(b) 6= b, which must then differ
by a minus sign since their squares are the same.
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