GRV II, test 1.

1. Let R be a commutative ring with identity. Write down definitions for: an irreducible element of R, a prime element of R, and give the definition of an Eisenstein polynomial $f \in R[x]$.

2 . Let R be a commutative ring with identity.
(a) Let K be a field and let $\phi: R \rightarrow K$ be a homomorphism with $\phi(1) \neq 0$. Show that the kernel of ϕ is a prime ideal.
(b) Conversely, if P is a prime ideal, then show that there exists a field K and a homomorphism $\phi: R \rightarrow K$ with kernel P.
3. Let $n=p_{1}^{e_{1}} p_{2}^{e_{2}} p_{3}^{e_{3}}$ where p_{1}, p_{2}, p_{3} are distinct prime numbers and $e_{i}>0$. Show there are 8 distinct $m \in\{0, \ldots, n-1\}$ for which $m^{2} \equiv m \bmod n$.
4. Suppose $f \in \mathbb{Z}[i][x]$ is reducible in the larger ring $\mathbb{Q}[i][x]$. Must f then also be reducible in the smaller ring $\mathbb{Z}[i][x]$?
5. List every (up to isomorphism) abelian group of order 128 that has a subgroup isomorphic to $C_{2} \times C_{2} \times C_{2}$ but not a subgroup isomorphic to $C_{2} \times C_{2} \times C_{2} \times C_{2}$.
6. If p is a prime number and $p \equiv 1 \bmod 3$, then show that there exists a non-abelian group of order $3 p$.
7. (Take home). Let R be a commutative ring with identity.

Let I, J be ideals and let M be the R-module $R / I \times R / J$. Show that

$$
I+J=R \Longleftrightarrow M \text { is a cyclic } R \text {-module. }
$$

