GRV II, test 1 with answers.

1. Let R be a commutative ring with identity. Write down definitions for: an irreducible element of R, a prime element of R, and give the definition of an Eisenstein polynomial $f \in R[x]$.

ANS: Let $p \neq 0$ and not a unit. Then p irreducible means: $p=q r$ implies that q or r is a unit.
p prime means that $p \mid a b$ implies $p \mid a$ or $p \mid b$ (equivalently: the ideal (p) is prime).
$f=a_{0} x^{0}+\cdots+a_{n} x^{n}$ is Eisenstein if there is a prime ideal P with $a_{i} \in P$ for $i<n, a_{n} \notin P$ and $a_{0} \notin P^{2}$.
2. Let R be a commutative ring with identity.
(a) Let K be a field and let $\phi: R \rightarrow K$ be a homomorphism with $\phi(1) \neq 0$. Show that the kernel of ϕ is a prime ideal.
ANS: If $a b \in \operatorname{ker} \phi$ then $\phi(a b)=\phi(a) \phi(b)=0$, but this is in a field, so $\phi(a)=0$ or $\phi(b)=0$, so $a \in \operatorname{ker} \phi$ or $b \in \operatorname{ker} \phi$
(b) Conversely, if P is a prime ideal, then show that there exists a field K and a homomorphism $\phi: R \rightarrow K$ with kernel P.
ANS: Let K be the field of fractions of R / P and compose the natural homomorphisms $R \rightarrow R / P \rightarrow K$.
3. Let $n=p_{1}^{e_{1}} p_{2}^{e_{2}} p_{3}^{e_{3}}$ where p_{1}, p_{2}, p_{3} are distinct prime numbers and $e_{i}>0$. Show there are 8 distinct $m \in\{0, \ldots, n-1\}$ for which $m^{2} \equiv m \bmod n$.
ANS: By the Chinese Remainder Theorem, $\mathbb{Z} /(n) \cong R_{1} \times R_{2} \times R_{3}$ where $R_{i}=\mathbb{Z} /\left(p_{i}^{e_{1}}\right)$. Each R_{i} has two solutions of $m^{2}=m$, taking all combinations gives $2^{3}=8$ solutions in $R_{1} \times R_{2} \times R_{3}$.
4. Suppose $f \in \mathbb{Z}[i][x]$ is reducible in the larger ring $\mathbb{Q}[i][x]$.

Must f then also be reducible in the smaller ring $\mathbb{Z}[i][x]$?
ANS: The ring $R:=\mathbb{Z}[i]$ is a UFD, and $K:=\mathbb{Q}[i]$ is its field of fractions. Then we can apply Gauss' lemma to show that reducible in $K[x]$ implies reducible in $R[x]$.

Note: It is important that R is a UFD. For example, if $R=\mathbb{Z}[\sqrt{-7}]$ then $K=\mathbb{Q}[\sqrt{-7}]$ and $f:=x^{2}+x+2$ is reducible in $K[x]$ but irreducible in $R[x]$ (to see this, compute a root of f).
5. List every (up to isomorphism) abelian group of order 128 that has a subgroup isomorphic to $C_{2} \times C_{2} \times C_{2}$ but not a subgroup isomorphic to $C_{2} \times C_{2} \times C_{2} \times C_{2}$.
$C_{2^{n}}$ (with $n>0$) has a subgroup isomorphic to C_{2}. So our groups look like $C_{2^{n_{1}}} \times C_{2^{n_{2}}} \times C_{2^{n_{3}}}$ with $n_{1} \geq n_{2} \geq n_{3} \geq 1$ and $n_{1}+n_{2}+n_{3}=7$. We find four solutions $5+1+1,4+2+1,3+3+1,3+2+2$.
6. If p is a prime number and $p \equiv 1 \bmod 3$, then show that there exists a non-abelian group of order $3 p$.
ANS: Let C_{p} be the cyclic group of order p, and let $H=\operatorname{Aut}\left(C_{p}\right) \cong \mathbb{F}_{p}^{*}$ which has order $p-1$. If $3 \mid p-1$, then H has an element h of order 3 . Now take the semi-direct product $C_{p} \rtimes<h>$.
7. (Take home). Let R be a commutative ring with identity.

Let I, J be ideals and let M be the R-module $R / I \times R / J$. Show that

$$
I+J=R \Longleftrightarrow M \text { is a cyclic } R \text {-module. }
$$

ANS: If $I+J=R$ them $M \cong R / I J$ by the Chinese Remainder Theorem (exercise: an R-module M is cyclic if and only if $M \cong R / I$ for some I).
Remains to show: If $I+J \neq R$ then show that M is not cyclic.
ANS: Let $m=(1+I, 0+J)$ and $n=(0+I, 1+J)$. If $R / I \times R / J$ is cyclic, then it has a generator $(a, b) \in R / I \times R / J$, so then $m=r(a, b)$ and $n=s(a, b)$ for some $r, s \in R$. Then $r a=1+I, r b=0+J, s a=0+I$, $s b=1+J$. Then $r s b$ equals $r 1+J$ but also $0 s+J$ and hence $r+J=0+J$ and so $r \in J$. Combining $r a=1+I$ and $r \in J$ we find $1 \in I+J$ which contradicts $I+J \neq R$.

