
GRV II, test 1 with answers.

1. Let R be a commutative ring with identity. Write down definitions for:
an irreducible element of R, a prime element of R, and give the definition
of an Eisenstein polynomial f ∈ R[x].

ANS: Let p 6= 0 and not a unit. Then p irreducible means: p = qr implies
that q or r is a unit.
p prime means that p|ab implies p|a or p|b (equivalently: the ideal (p) is
prime).
f = a0x

0 + · · ·+anx
n is Eisenstein if there is a prime ideal P with ai ∈ P

for i < n, an 6∈ P and a0 6∈ P 2.

2. Let R be a commutative ring with identity.

(a) Let K be a field and let φ : R → K be a homomorphism with
φ(1) 6= 0. Show that the kernel of φ is a prime ideal.

ANS: If ab ∈ kerφ then φ(ab) = φ(a)φ(b) = 0, but this is in a field,
so φ(a) = 0 or φ(b) = 0, so a ∈ kerφ or b ∈ kerφ

(b) Conversely, if P is a prime ideal, then show that there exists a field
K and a homomorphism φ : R→ K with kernel P .

ANS: Let K be the field of fractions of R/P and compose the natural
homomorphisms R→ R/P → K.

3. Let n = pe11 p
e2
2 p

e3
3 where p1, p2, p3 are distinct prime numbers and ei > 0.

Show there are 8 distinct m ∈ {0, . . . , n− 1} for which m2 ≡ m mod n.

ANS: By the Chinese Remainder Theorem, Z/(n) ∼= R1 ×R2 ×R3 where
Ri = Z/(pe1i ). Each Ri has two solutions of m2 = m, taking all combina-
tions gives 23 = 8 solutions in R1 ×R2 ×R3.

4. Suppose f ∈ Z[i][x] is reducible in the larger ring Q[i][x].
Must f then also be reducible in the smaller ring Z[i][x]?

ANS: The ring R := Z[i] is a UFD, and K := Q[i] is its field of fractions.
Then we can apply Gauss’ lemma to show that reducible in K[x] implies
reducible in R[x].

Note: It is important that R is a UFD. For example, if R = Z[
√
−7] then

K = Q[
√
−7] and f := x2 + x + 2 is reducible in K[x] but irreducible in

R[x] (to see this, compute a root of f).

5. List every (up to isomorphism) abelian group of order 128 that has a
subgroup isomorphic to C2 × C2 × C2 but not a subgroup isomorphic to
C2 × C2 × C2 × C2.

C2n (with n > 0) has a subgroup isomorphic to C2. So our groups look
like C2n1 ×C2n2 ×C2n3 with n1 ≥ n2 ≥ n3 ≥ 1 and n1 +n2 +n3 = 7. We
find four solutions 5 + 1 + 1, 4 + 2 + 1, 3 + 3 + 1, 3 + 2 + 2.



6. If p is a prime number and p ≡ 1 mod 3, then show that there exists a
non-abelian group of order 3p.

ANS: Let Cp be the cyclic group of order p, and let H = Aut(Cp) ∼= F∗
p

which has order p−1. If 3|p−1, then H has an element h of order 3. Now
take the semi-direct product Cpo <h>.

7. (Take home). Let R be a commutative ring with identity.
Let I, J be ideals and let M be the R-module R/I ×R/J . Show that

I + J = R ⇐⇒ M is a cyclic R−module.

ANS: If I + J = R them M ∼= R/IJ by the Chinese Remainder Theorem
(exercise: an R-module M is cyclic if and only if M ∼= R/I for some I).

Remains to show: If I + J 6= R then show that M is not cyclic.

ANS: Let m = (1 + I, 0 + J) and n = (0 + I, 1 + J). If R/I × R/J is
cyclic, then it has a generator (a, b) ∈ R/I×R/J , so then m = r(a, b) and
n = s(a, b) for some r, s ∈ R. Then ra = 1 + I, rb = 0 + J , sa = 0 + I,
sb = 1+J . Then rsb equals r1+J but also 0s+J and hence r+J = 0+J
and so r ∈ J . Combining ra = 1 + I and r ∈ J we find 1 ∈ I + J which
contradicts I + J 6= R.


