GRV II, test 1 with answers.

1. Let R be a commutative ring with identity. Write down definitions for: an irreducible element of R, a prime element of R, and give the definition of an Eisenstein polynomial $f \in R[x]$.

ANS: Let $p \neq 0$ and not a unit. Then p irreducible means: p = qr implies that q or r is a unit.

p prime means that p|ab implies p|a or p|b (equivalently: the ideal (p) is prime).

 $f = a_0 x^0 + \dots + a_n x^n$ is Eisenstein if there is a prime ideal P with $a_i \in P$ for $i < n, a_n \notin P$ and $a_0 \notin P^2$.

- 2. Let R be a commutative ring with identity.
 - (a) Let K be a field and let $\phi : R \to K$ be a homomorphism with $\phi(1) \neq 0$. Show that the kernel of ϕ is a prime ideal.

ANS: If $ab \in \ker \phi$ then $\phi(ab) = \phi(a)\phi(b) = 0$, but this is in a field, so $\phi(a) = 0$ or $\phi(b) = 0$, so $a \in \ker \phi$ or $b \in \ker \phi$

(b) Conversely, if P is a prime ideal, then show that there exists a field K and a homomorphism $\phi: R \to K$ with kernel P.

ANS: Let K be the field of fractions of R/P and compose the natural homomorphisms $R \to R/P \to K$.

3. Let $n = p_1^{e_1} p_2^{e_2} p_3^{e_3}$ where p_1, p_2, p_3 are distinct prime numbers and $e_i > 0$. Show there are 8 distinct $m \in \{0, \ldots, n-1\}$ for which $m^2 \equiv m \mod n$.

ANS: By the Chinese Remainder Theorem, $\mathbb{Z}/(n) \cong R_1 \times R_2 \times R_3$ where $R_i = \mathbb{Z}/(p_i^{e_1})$. Each R_i has two solutions of $m^2 = m$, taking all combinations gives $2^3 = 8$ solutions in $R_1 \times R_2 \times R_3$.

4. Suppose $f \in \mathbb{Z}[i][x]$ is reducible in the larger ring $\mathbb{Q}[i][x]$. Must f then also be reducible in the smaller ring $\mathbb{Z}[i][x]$?

ANS: The ring $R := \mathbb{Z}[i]$ is a UFD, and $K := \mathbb{Q}[i]$ is its field of fractions. Then we can apply Gauss' lemma to show that reducible in K[x] implies reducible in R[x].

Note: It is important that R is a UFD. For example, if $R = \mathbb{Z}[\sqrt{-7}]$ then $K = \mathbb{Q}[\sqrt{-7}]$ and $f := x^2 + x + 2$ is reducible in K[x] but irreducible in R[x] (to see this, compute a root of f).

5. List every (up to isomorphism) abelian group of order 128 that has a subgroup isomorphic to $C_2 \times C_2 \times C_2$ but not a subgroup isomorphic to $C_2 \times C_2 \times C_2 \times C_2$.

 C_{2^n} (with n > 0) has a subgroup isomorphic to C_2 . So our groups look like $C_{2^{n_1}} \times C_{2^{n_2}} \times C_{2^{n_3}}$ with $n_1 \ge n_2 \ge n_3 \ge 1$ and $n_1 + n_2 + n_3 = 7$. We find four solutions 5 + 1 + 1, 4 + 2 + 1, 3 + 3 + 1, 3 + 2 + 2.

6. If p is a prime number and $p \equiv 1 \mod 3$, then show that there exists a non-abelian group of order 3p.

ANS: Let C_p be the cyclic group of order p, and let $H = \operatorname{Aut}(C_p) \cong \mathbb{F}_p^*$ which has order p-1. If 3|p-1, then H has an element h of order 3. Now take the semi-direct product $C_p \rtimes \langle h \rangle$.

7. (Take home). Let R be a commutative ring with identity. Let I, J be ideals and let M be the R-module $R/I \times R/J$. Show that

 $I + J = R \iff M$ is a cyclic *R*-module.

ANS: If I + J = R them $M \cong R/IJ$ by the Chinese Remainder Theorem (exercise: an *R*-module *M* is cyclic if and only if $M \cong R/I$ for some *I*).

Remains to show: If $I + J \neq R$ then show that M is not cyclic.

ANS: Let m = (1 + I, 0 + J) and n = (0 + I, 1 + J). If $R/I \times R/J$ is cyclic, then it has a generator $(a, b) \in R/I \times R/J$, so then m = r(a, b) and n = s(a, b) for some $r, s \in R$. Then ra = 1 + I, rb = 0 + J, sa = 0 + I, sb = 1 + J. Then rsb equals r1 + J but also 0s + J and hence r + J = 0 + J and so $r \in J$. Combining ra = 1 + I and $r \in J$ we find $1 \in I + J$ which contradicts $I + J \neq R$.