GRV II test 2.

1. (a) Let $R=\mathbb{Q}[x]$. List, up to isomorphism, every R-module M with the following properties:
(i) The dimension of M as a \mathbb{Q}-vector space is 4 .
(ii) For $x^{4} m=0$ for every $m \in M$.
(b) For each M in (i), give the Jordan Normal Form of the matrix of the \mathbb{Q}-linear map $M \rightarrow M$ given by $m \mapsto x \cdot m$.
2. Let M be a $\mathbb{Q}[x]$-module that is not cyclic. Suppose that the dimension of M as a \mathbb{Q}-vector space is 5 . Show that there is an eigenvalue in \mathbb{Q}, i.e., show that there exists $\lambda \in \mathbb{Q}$ and $m \in M-\{0\}$ with $x \cdot m=\lambda m$.
Give an example that shows this need not be true in dimension 4.
3. The map $\phi: \mathbb{Z}^{3} \rightarrow \mathbb{Z}^{3}$ is given by the matrix

$$
A:=\left(\begin{array}{ccc}
42 & 24 & 36 \\
24 & 14 & 20 \\
36 & 20 & 32
\end{array}\right)
$$

Compute the standard form (rank and invariant factors) of the \mathbb{Z}-module $\mathbb{Z}^{3} / \operatorname{im}(\phi)$.
4. Let R be a commutative ring, let $A \in \operatorname{Mat}_{n, n}(R)$, and $d=\operatorname{det}(A)$.
(a) Suppose there is a non-zero $v \in R^{n}$ with $A v=0$. Show that d is zero or a zero-divisor. (hint: adjoint matrix).
(b) Let $w \in R^{n}$. Show that there exists $v \in R^{n}$ with $A v=d w$.
5. Let R be an integral domain. Let M be an R-module of rank $m<\infty$, and let $N \subseteq M$ be a submodule of rank n.
(a) Give the definition of rank. M has rank m means:
(b) Show that $n \leq m$.
(c) Suppose that $m=n$. Prove that M / N is a torsion module (i.e. prove that if $x \in M / N$ then there exists $r \in R, r \neq 0$, and $r x=0)$.

