GRV II test 2.

- 1. (a) Let $R = \mathbb{Q}[x]$. List, up to isomorphism, every *R*-module *M* with the following properties:
 - (i) The dimension of M as a \mathbb{Q} -vector space is 4.
 - (ii) For $x^4m = 0$ for every $m \in M$.
 - (b) For each M in (i), give the Jordan Normal Form of the matrix of the \mathbb{Q} -linear map $M \to M$ given by $m \mapsto x \cdot m$.
- 2. Let M be a $\mathbb{Q}[x]$ -module that is not cyclic. Suppose that the dimension of M as a \mathbb{Q} -vector space is 5. Show that there is an eigenvalue in \mathbb{Q} , i.e., show that there exists $\lambda \in \mathbb{Q}$ and $m \in M \{0\}$ with $x \cdot m = \lambda m$.

Give an example that shows this need not be true in dimension 4.

3. The map $\phi: \mathbb{Z}^3 \to \mathbb{Z}^3$ is given by the matrix

$$A := \left(\begin{array}{rrr} 42 & 24 & 36 \\ 24 & 14 & 20 \\ 36 & 20 & 32 \end{array} \right)$$

Compute the standard form (rank and invariant factors) of the \mathbb{Z} -module $\mathbb{Z}^3/\operatorname{im}(\phi)$.

- 4. Let R be a commutative ring, let $A \in Mat_{n,n}(R)$, and d = det(A).
 - (a) Suppose there is a non-zero $v \in \mathbb{R}^n$ with Av = 0. Show that d is zero or a zero-divisor. (hint: adjoint matrix).
 - (b) Let $w \in \mathbb{R}^n$. Show that there exists $v \in \mathbb{R}^n$ with Av = dw.
- 5. Let R be an integral domain. Let M be an R-module of rank $m < \infty$, and let $N \subseteq M$ be a submodule of rank n.
 - (a) Give the definition of rank. M has rank m means:
 - (b) Show that $n \leq m$.
 - (c) Suppose that m = n. Prove that M/N is a torsion module (i.e. prove that if $x \in M/N$ then there exists $r \in R$, $r \neq 0$, and rx = 0).