GRV II test 2.

1. (a) Let $R=\mathbb{Q}[x]$. List, up to isomorphism, every R-module M with the following properties:
(i) The dimension of M as a \mathbb{Q}-vector space is 4 .
(ii) For $x^{4} m=0$ for every $m \in M$.
(b) For each M in (i), give the Jordan Normal Form of the matrix of the Q-linear map $M \rightarrow M$ given by $m \mapsto x \cdot m$.
M is isomorphic to $R /\left(a_{1}\right) \oplus \cdots \oplus R /\left(a_{k}\right)$ with $a_{1}\left|a_{2}\right| \cdots \mid a_{k}$. The dimension is 4 so the degree of $a_{1} \cdots a_{k}$ is 4 . Since x^{4} annihilates M, we find that each a_{i} divides x^{4}. So the a_{i} are powers of x, and the sum of those powers is 4 . This means that each a_{1}, \ldots, a_{k} corresponds precisely to a partition of 4 . The partitions of 4 are: $1+1+1+1,1+1+2,1+3,2+2$, and 4 . The corresponding a_{1}, \ldots, a_{k} are: (i) x, x, x, x (ii) x, x, x^{2}, (iii) x, x^{3}, (iv) x^{2}, x^{2}, and (v) x^{4}.
The corresponding matrices in Jordan form are

$$
\begin{aligned}
& \left(\begin{array}{llll}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right),\left(\begin{array}{llll}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0
\end{array}\right),\left(\begin{array}{llll}
0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0
\end{array}\right) \\
& \\
& \left(\begin{array}{llll}
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0
\end{array}\right),\left(\begin{array}{llll}
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0
\end{array}\right)
\end{aligned}
$$

2. Let M be a $\mathbb{Q}[x]$-module that is not cyclic. Suppose that the dimension of M as a \mathbb{Q}-vector space is 5 . Show that there is an eigenvalue in \mathbb{Q}, i.e., show that there exists $\lambda \in \mathbb{Q}$ and $m \in M-\{0\}$ with $x \cdot m=\lambda m$.
Give an example that shows this need not be true in dimension 4.
M is isomorphic to $R /\left(a_{1}\right) \oplus \cdots \oplus R /\left(a_{k}\right)$ with $a_{1}\left|a_{2}\right| \cdots \mid a_{k}$. Here $k>1$ since M is not cyclic. If a_{1} has degree 1 , then it has a rational root $\lambda \in \mathbb{Q}$. The product $a_{1} \cdots a_{k}$ is the characteristic polynomial, its roots are the eigenvalues, so any root of any a_{i} is an eigenvalue. So λ is an eigenvalue of the multiply-by- x map.
If a_{1} has degree 2 , then k can only be 2 and a_{2} must have degree 3 . But a_{2} must also be divisible by a_{1}, and the quotient a_{2} / a_{1} is a polynomial of degree 1 , which thus has a rational root.

If the dimension is 4 , then we could have $a_{1}=a_{2}$ irreducible of degree 2 . For instance, $a_{1}=a_{2}=x^{2}+1$. The matrix for this is is a block matrix,
where each block on the diagonal is the companion matrix of $x^{2}+1$:

$$
\left(\begin{array}{cccc}
0 & -1 & 0 & 0 \\
1 & 0 & 0 & 0 \\
0 & 0 & 0 & -1 \\
0 & 0 & 1 & 0
\end{array}\right)
$$

3. The $\operatorname{map} \phi: \mathbb{Z}^{3} \rightarrow \mathbb{Z}^{3}$ is given by the matrix

$$
A:=\left(\begin{array}{ccc}
42 & 24 & 36 \\
24 & 14 & 20 \\
36 & 20 & 32
\end{array}\right)
$$

Compute the standard form (rank and invariant factors) of the \mathbb{Z}-module $\mathbb{Z}^{3} / \operatorname{im}(\phi)$.
The rank is 1 and the invariant factors a_{1}, \ldots, a_{k} are 2,6 . So the module is isomorphic to $\mathbb{Z} \oplus \mathbb{Z} /(2) \oplus \mathbb{Z} /(6)$.
4. Let R be a commutative ring, let $A \in \operatorname{Mat}_{n, n}(R)$, and $d=\operatorname{det}(A)$.
(a) Suppose there is a non-zero $v \in R^{n}$ with $A v=0$. Show that d is zero or a zero-divisor. (hint: adjoint matrix).
(b) Let $w \in R^{n}$. Show that there exists $v \in R^{n}$ with $A v=d w$.

Let B be the adjoint matrix. Then $A B=B A=d I$. For the first question, multiply $A v=0$ by B gives $d v=0$. But v contains non-zero entries. Then d must be zero or a zero-divisor. For the second question, take $v=B w$. Then $A v=A B w=d w$.
5. Let R be an integral domain. Let M be an R-module of rank $m<\infty$, and let $N \subseteq M$ be a submodule of rank n.
(a) Give the definition of rank. M has rank m means:
(b) Show that $n \leq m$.
(c) Suppose that $m=n$. Prove that M / N is a torsion module (i.e. prove that if $x \in M / N$ then there exists $r \in R, r \neq 0$, and $r x=0)$.

The rank of M is the highest number of R-linearly independent elements of M. Since $N \subseteq M$, if N has n independent elements, then M will also have the same n independent elements. So $m \geq n$.
If $m=n$ then we have n independent elements a_{1}, \ldots, a_{n} in N, but we can not find additional independent elements in M. So if $x \in M$ then a_{1}, \ldots, a_{n}, x must be dependent: $c_{1} a_{1}+\cdots+c_{n} a_{n}+r x=0$ where not all coefficients are 0 . Then $r \neq 0$ because a_{1}, \ldots, a_{n} are independent. So $r x \in N$. Then $r x$ is zero in M / N, for any $x \in M$, so M / N is torsion.

