GRV II test 2.

- 1. (a) Let $R = \mathbb{Q}[x]$. List, up to isomorphism, every *R*-module *M* with the following properties:
 - (i) The dimension of M as a \mathbb{Q} -vector space is 4.
 - (ii) For $x^4m = 0$ for every $m \in M$.
 - (b) For each M in (i), give the Jordan Normal Form of the matrix of the \mathbb{Q} -linear map $M \to M$ given by $m \mapsto x \cdot m$.

M is isomorphic to $R/(a_1) \oplus \cdots \oplus R/(a_k)$ with $a_1|a_2| \cdots |a_k$. The dimension is 4 so the degree of $a_1 \cdots a_k$ is 4. Since x^4 annihilates *M*, we find that each a_i divides x^4 . So the a_i are powers of *x*, and the sum of those powers is 4. This means that each a_1, \ldots, a_k corresponds precisely to a partition of 4. The partitions of 4 are: 1 + 1 + 1 + 1, 1 + 1 + 2, 1 + 3, 2 + 2, and 4. The corresponding a_1, \ldots, a_k are: (i) x, x, x, x (ii) x, x, x^2 , (iii) x, x^3 , (iv) x^2, x^2 , and (v) x^4 .

The corresponding matrices in Jordan form are

2. Let M be a $\mathbb{Q}[x]$ -module that is not cyclic. Suppose that the dimension of M as a \mathbb{Q} -vector space is 5. Show that there is an eigenvalue in \mathbb{Q} , i.e., show that there exists $\lambda \in \mathbb{Q}$ and $m \in M - \{0\}$ with $x \cdot m = \lambda m$.

Give an example that shows this need not be true in dimension 4.

M is isomorphic to $R/(a_1) \oplus \cdots \oplus R/(a_k)$ with $a_1|a_2|\cdots|a_k$. Here k > 1 since *M* is not cyclic. If a_1 has degree 1, then it has a rational root $\lambda \in \mathbb{Q}$. The product $a_1 \cdots a_k$ is the characteristic polynomial, its roots are the eigenvalues, so any root of any a_i is an eigenvalue. So λ is an eigenvalue of the multiply-by-*x* map.

If a_1 has degree 2, then k can only be 2 and a_2 must have degree 3. But a_2 must also be divisible by a_1 , and the quotient a_2/a_1 is a polynomial of degree 1, which thus has a rational root.

If the dimension is 4, then we could have $a_1 = a_2$ irreducible of degree 2. For instance, $a_1 = a_2 = x^2 + 1$. The matrix for this is a block matrix, where each block on the diagonal is the companion matrix of $x^2 + 1$:

3. The map $\phi : \mathbb{Z}^3 \to \mathbb{Z}^3$ is given by the matrix

$$A := \left(\begin{array}{rrrr} 42 & 24 & 36 \\ 24 & 14 & 20 \\ 36 & 20 & 32 \end{array}\right)$$

Compute the standard form (rank and invariant factors) of the \mathbb{Z} -module $\mathbb{Z}^3/\operatorname{im}(\phi)$.

The rank is 1 and the invariant factors a_1, \ldots, a_k are 2, 6. So the module is isomorphic to $\mathbb{Z} \oplus \mathbb{Z}/(2) \oplus \mathbb{Z}/(6)$.

- 4. Let R be a commutative ring, let $A \in Mat_{n,n}(R)$, and d = det(A).
 - (a) Suppose there is a non-zero $v \in \mathbb{R}^n$ with Av = 0. Show that d is zero or a zero-divisor. (hint: adjoint matrix).
 - (b) Let $w \in \mathbb{R}^n$. Show that there exists $v \in \mathbb{R}^n$ with Av = dw.

Let B be the adjoint matrix. Then AB = BA = dI. For the first question, multiply Av = 0 by B gives dv = 0. But v contains non-zero entries. Then d must be zero or a zero-divisor. For the second question, take v = Bw. Then Av = ABw = dw.

- 5. Let R be an integral domain. Let M be an R-module of rank $m < \infty$, and let $N \subseteq M$ be a submodule of rank n.
 - (a) Give the definition of rank. M has rank m means:
 - (b) Show that $n \leq m$.
 - (c) Suppose that m = n. Prove that M/N is a torsion module (i.e. prove that if $x \in M/N$ then there exists $r \in R$, $r \neq 0$, and rx = 0).

The rank of M is the highest number of R-linearly independent elements of M. Since $N \subseteq M$, if N has n independent elements, then M will also have the same n independent elements. So $m \ge n$.

If m = n then we have n independent elements a_1, \ldots, a_n in N, but we can not find additional independent elements in M. So if $x \in M$ then a_1, \ldots, a_n, x must be dependent: $c_1a_1 + \cdots + c_na_n + rx = 0$ where not all coefficients are 0. Then $r \neq 0$ because a_1, \ldots, a_n are independent. So $rx \in N$. Then rx is zero in M/N, for any $x \in M$, so M/N is torsion.