GRV II test 2a.

1. The map $\phi : \mathbb{Z}^3 \to \mathbb{Z}^3$ is given by the matrix

$$A := \left(\begin{array}{rrrr} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{array} \right)$$

- (a) Compute the standard form of the \mathbb{Z} -module $\mathbb{Z}^3/\operatorname{im}(\phi)$.
 - Rank:
 - Invariant factor(s):
- (b) What is the minimal number of generators for $\mathbb{Z}^3/\operatorname{im}(\phi)$?
- 2. Up to similarity, how many 4 by 4 matrices over \mathbb{F}_p exist whose characteristic polynomial is not equal to its minimal polynomial?
- 3. Let A be an n by n matrix over \mathbb{Q} . If all eigenvalues are in \mathbb{Q} then show that there exists a basis b_1, \ldots, b_n of \mathbb{Q}^n for which $Ab_1 \in \text{SPAN}_{\mathbb{Q}}(b_1)$ and $Ab_i \in \text{SPAN}_{\mathbb{Q}}(b_i, b_{i-1})$ for $i = 2, \ldots, n$.
- 4. Let *m* be a positive integer and $f = x^m 2$. Show that *f* is irreducible. If *A* is an *n* by *n* matrix over \mathbb{Q} and $A^m = 2I$ then show that m|n.
- 5. (bonus or take-home) (if exercises 1–4 are correct then you aced the test).

Let R be a PID and let M be a finitely generated R-module with annihilator $(f) \neq (0)$. Show that there exists a homomorphism $\phi : M \to M$ with $\phi \circ \phi = \phi$ and $\phi(M) \cong R/(f)$.