GRV II test 2a.

1. The $\operatorname{map} \phi: \mathbb{Z}^{3} \rightarrow \mathbb{Z}^{3}$ is given by the matrix

$$
A:=\left(\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6 \\
7 & 8 & 9
\end{array}\right)
$$

(a) Compute the standard form of the \mathbb{Z}-module $\mathbb{Z}^{3} / \mathrm{im}(\phi)$.

- Rank:
- Invariant factor(s):
(b) What is the minimal number of generators for $\mathbb{Z}^{3} / \operatorname{im}(\phi)$?

2. Up to similarity, how many 4 by 4 matrices over \mathbb{F}_{p} exist whose characteristic polynomial is not equal to its minimal polynomial?
3. Let A be an n by n matrix over \mathbb{Q}. If all eigenvalues are in \mathbb{Q} then show that there exists a basis b_{1}, \ldots, b_{n} of \mathbb{Q}^{n} for which $A b_{1} \in \operatorname{SPAN}_{\mathbb{Q}}\left(b_{1}\right)$ and $A b_{i} \in \operatorname{SPAN}_{\mathbb{Q}}\left(b_{i}, b_{i-1}\right)$ for $i=2, \ldots, n$.
4. Let m be a positive integer and $f=x^{m}-2$. Show that f is irreducible. If A is an n by n matrix over \mathbb{Q} and $A^{m}=2 I$ then show that $m \mid n$.
5. (bonus or take-home) (if exercises 1-4 are correct then you aced the test).

Let R be a PID and let M be a finitely generated R-module with annihilator $(f) \neq(0)$. Show that there exists a homomorphism $\phi: M \rightarrow M$ with $\phi \circ \phi=\phi$ and $\phi(M) \cong R /(f)$.

