
GRV II test 2a.

1. The map φ : Z3 → Z3 is given by the matrix

A :=


1 2 3

4 5 6

7 8 9


(a) Compute the standard form of the Z-module Z3/im(φ).

Using elementary row and column operations (switching columns or
rows, multiplying columns or rows by units (i.e. ±1), and replacing
a column resp. row by the sum of that column resp. row minus
an integer-multiple of another column resp. row) we end up with a
diagonal matrix, with 1, 3, 0 on the diagonal. So our module is then
Z/(1)⊕ Z/(3)⊕ Z/(0) ∼= Z⊕ Z/(3).

• Rank: 1

• Invariant factor(s): 3.

If you wrote rank = 1 and invariant factors = 1,3 then that
corresponds to the same module.
It is standard practice to deleting units from the invariant factors;
this does not change the module as it corresponds to deleting
trivial Z/(1)’s.

(b) What is the minimal number of generators for Z3/im(φ)?

Answer: 2. The module is not cyclic, so 1 won’t do, and clearly
{(1, 0), (0, 1)} generates Z⊕ Z/(3).

2. Up to similarity, how many 4 by 4 matrices over Fp exist whose charac-
teristic polynomial is not equal to its minimal polynomial?

The invariant factors are monic polynomials with a1|a2| · · · |am. Here
m > 1 since the minimal polynomial (which equals am) must differ from
the characteristic polynomial (which equals a1 · · · am). The degrees must
be a non-decreasing sequence with m entries adding up to 4:

2 + 2: a1 = a2 = any monic polynomial of degree 2 (there are p2 such
polynomials).
1 + 3: a1 = monic and linear (p cases) and a2/a1 is monic quadratic (p2

cases, for a total of p · p2 cases).
1 + 1 + 2: a1 = a2 is linear and a3/a2 is linear for a total of p · p cases.
1 + 1 + 1 + 1: a1 = · · · = a4 is linear, p cases.

Total: p2 + p3 + p2 + p = p3 + 2p2 + p.

3. Let A be an n by n matrix over Q. If all eigenvalues are in Q then show
that there exists a basis b1, . . . , bn of Qn for which Ab1 ∈ SPANQ(b1) and
Abi ∈ SPANQ(bi, bi−1) for i = 2, . . . , n.
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All eigenvalues are in Q so A is similar (over Q) to a matrix J in Jordan
Normal Form. This matrix J only has entries on the diagonal and on the
line directly above the diagonal, in other words, Je1 ∈ SPANQ(e1) and
Jei ∈ SPANQ(ei, ei−1) for i > 1. The fact that J is similar to A means
that there is some basis b1, . . . , bn such that the matrix of the linear map
v 7→ Av with respect to basis b1, . . . , bn is J . For that basis we have the
required property.

4. Let m be a positive integer and f = xm − 2. Show that f is irreducible.
If A is an n by n matrix over Q and Am = 2I then show that m|n.

f is 2-Eisenstein and hence irreducible in Z[x] (and thus irreducible in
Q[x] by Gauss’ lemma).

Since f(A) = 0 it follows that f is divisible by the minimal polynomial
of A. But f is irreducible so f equals the minimal polynomial. The
characteristic polynomial divides a power of the minimal polynomial, so
it divides a power of f . But if g|fN and g is monic, and f is irreducible,
then g must also be a power of f . So the characteristic polynomial is a
power of f . So its degree (which equals n) must be divisible by the degree
of f (which equals m).

5. (bonus or take-home) (if exercises 1–4 are correct then you aced the test).

Let R be a PID and let M be a finitely generated R-module with anni-
hilator (f) 6= (0). Show that there exists a homomorphism φ : M → M
with φ ◦ φ = φ and φ(M) ∼= R/(f).

By the classification theorem, we may (up to isomorphism) write M as
R/(a1)⊕· · ·⊕R/(am) with am = f . Now let φ : R/(a1)⊕· · ·⊕R/(am)→
R/(a1)⊕ · · · ⊕R/(am) send (r1, . . . , rm) to (0, . . . , 0, rm). Then φ ◦ φ = φ
and φ(M) = {0} ⊕ · · · ⊕ {0} ⊕R/(am) ∼= R/(am) = R/(f).
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