GRV II test 2a.

1. The map $\phi : \mathbb{Z}^3 \to \mathbb{Z}^3$ is given by the matrix

$$A := \left(\begin{array}{rrrr} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{array}\right)$$

(a) Compute the standard form of the \mathbb{Z} -module $\mathbb{Z}^3/\operatorname{im}(\phi)$.

Using elementary row and column operations (switching columns or rows, multiplying columns or rows by units (i.e. ± 1), and replacing a column resp. row by the sum of that column resp. row minus an integer-multiple of another column resp. row) we end up with a diagonal matrix, with 1, 3, 0 on the diagonal. So our module is then $\mathbb{Z}/(1) \oplus \mathbb{Z}/(3) \oplus \mathbb{Z}/(0) \cong \mathbb{Z} \oplus \mathbb{Z}/(3)$.

- Rank: 1
- Invariant factor(s): 3.

If you wrote rank = 1 and invariant factors = 1,3 then that corresponds to the same module.

It is standard practice to deleting units from the invariant factors; this does not change the module as it corresponds to deleting trivial $\mathbb{Z}/(1)$'s.

(b) What is the minimal number of generators for $\mathbb{Z}^3/\mathrm{im}(\phi)$?

Answer: 2. The module is not cyclic, so 1 won't do, and clearly $\{(1,0), (0,1)\}$ generates $\mathbb{Z} \oplus \mathbb{Z}/(3)$.

2. Up to similarity, how many 4 by 4 matrices over \mathbb{F}_p exist whose characteristic polynomial is not equal to its minimal polynomial?

The invariant factors are monic polynomials with $a_1|a_2|\cdots|a_m$. Here m > 1 since the minimal polynomial (which equals a_m) must differ from the characteristic polynomial (which equals $a_1 \cdots a_m$). The degrees must be a non-decreasing sequence with m entries adding up to 4:

2+2: $a_1 = a_2 =$ any monic polynomial of degree 2 (there are p^2 such polynomials).

1+3: $a_1 = \text{monic and linear } (p \text{ cases}) \text{ and } a_2/a_1 \text{ is monic quadratic } (p^2 \text{ cases, for a total of } p \cdot p^2 \text{ cases}).$

1+1+2: $a_1 = a_2$ is linear and a_3/a_2 is linear for a total of $p \cdot p$ cases. 1+1+1+1: $a_1 = \cdots = a_4$ is linear, p cases.

Total: $p^2 + p^3 + p^2 + p = p^3 + 2p^2 + p$.

3. Let A be an n by n matrix over \mathbb{Q} . If all eigenvalues are in \mathbb{Q} then show that there exists a basis b_1, \ldots, b_n of \mathbb{Q}^n for which $Ab_1 \in \text{SPAN}_{\mathbb{Q}}(b_1)$ and $Ab_i \in \text{SPAN}_{\mathbb{Q}}(b_i, b_{i-1})$ for $i = 2, \ldots, n$. All eigenvalues are in \mathbb{Q} so A is similar (over \mathbb{Q}) to a matrix J in Jordan Normal Form. This matrix J only has entries on the diagonal and on the line directly above the diagonal, in other words, $Je_1 \in \text{SPAN}_{\mathbb{Q}}(e_1)$ and $Je_i \in \text{SPAN}_{\mathbb{Q}}(e_i, e_{i-1})$ for i > 1. The fact that J is similar to A means that there is some basis b_1, \ldots, b_n such that the matrix of the linear map $v \mapsto Av$ with respect to basis b_1, \ldots, b_n is J. For that basis we have the required property.

4. Let *m* be a positive integer and $f = x^m - 2$. Show that *f* is irreducible. If *A* is an *n* by *n* matrix over \mathbb{Q} and $A^m = 2I$ then show that m|n.

f is 2-Eisenstein and hence irreducible in $\mathbb{Z}[x]$ (and thus irreducible in $\mathbb{Q}[x]$ by Gauss' lemma).

Since f(A) = 0 it follows that f is divisible by the minimal polynomial of A. But f is irreducible so f equals the minimal polynomial. The characteristic polynomial divides a power of the minimal polynomial, so it divides a power of f. But if $g|f^N$ and g is monic, and f is irreducible, then g must also be a power of f. So the characteristic polynomial is a power of f. So its degree (which equals n) must be divisible by the degree of f (which equals m).

5. (bonus or take-home) (if exercises 1–4 are correct then you aced the test).

Let R be a PID and let M be a finitely generated R-module with annihilator $(f) \neq (0)$. Show that there exists a homomorphism $\phi : M \to M$ with $\phi \circ \phi = \phi$ and $\phi(M) \cong R/(f)$.

By the classification theorem, we may (up to isomorphism) write M as $R/(a_1) \oplus \cdots \oplus R/(a_m)$ with $a_m = f$. Now let $\phi : R/(a_1) \oplus \cdots \oplus R/(a_m) \to R/(a_1) \oplus \cdots \oplus R/(a_m)$ send (r_1, \ldots, r_m) to $(0, \ldots, 0, r_m)$. Then $\phi \circ \phi = \phi$ and $\phi(M) = \{0\} \oplus \cdots \oplus \{0\} \oplus R/(a_m) \cong R/(a_m) = R/(f)$.