GRV II test 2a.

1. The map $\phi: \mathbb{Z}^{3} \rightarrow \mathbb{Z}^{3}$ is given by the matrix

$$
A:=\left(\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6 \\
7 & 8 & 9
\end{array}\right)
$$

(a) Compute the standard form of the \mathbb{Z}-module $\mathbb{Z}^{3} / \mathrm{im}(\phi)$.

Using elementary row and column operations (switching columns or rows, multiplying columns or rows by units (i.e. ± 1), and replacing a column resp. row by the sum of that column resp. row minus an integer-multiple of another column resp. row) we end up with a diagonal matrix, with $1,3,0$ on the diagonal. So our module is then $\mathbb{Z} /(1) \oplus \mathbb{Z} /(3) \oplus \mathbb{Z} /(0) \cong \mathbb{Z} \oplus \mathbb{Z} /(3)$.

- Rank: 1
- Invariant factor(s): 3 .

If you wrote rank $=1$ and invariant factors $=1,3$ then that corresponds to the same module.
It is standard practice to deleting units from the invariant factors; this does not change the module as it corresponds to deleting trivial $\mathbb{Z} /(1)$'s.
(b) What is the minimal number of generators for $\mathbb{Z}^{3} / \mathrm{im}(\phi)$?

Answer: 2. The module is not cyclic, so 1 won't do, and clearly $\{(1,0),(0,1)\}$ generates $\mathbb{Z} \oplus \mathbb{Z} /(3)$.
2. Up to similarity, how many 4 by 4 matrices over \mathbb{F}_{p} exist whose characteristic polynomial is not equal to its minimal polynomial?
The invariant factors are monic polynomials with $a_{1}\left|a_{2}\right| \cdots \mid a_{m}$. Here $m>1$ since the minimal polynomial (which equals a_{m}) must differ from the characteristic polynomial (which equals $a_{1} \cdots a_{m}$). The degrees must be a non-decreasing sequence with m entries adding up to 4 :
$2+2: a_{1}=a_{2}=$ any monic polynomial of degree 2 (there are p^{2} such polynomials).
$1+3: a_{1}=$ monic and linear (p cases) and a_{2} / a_{1} is monic quadratic (p^{2} cases, for a total of $p \cdot p^{2}$ cases).
$1+1+2: a_{1}=a_{2}$ is linear and a_{3} / a_{2} is linear for a total of $p \cdot p$ cases.
$1+1+1+1: a_{1}=\cdots=a_{4}$ is linear, p cases.
Total: $p^{2}+p^{3}+p^{2}+p=p^{3}+2 p^{2}+p$.
3. Let A be an n by n matrix over \mathbb{Q}. If all eigenvalues are in \mathbb{Q} then show that there exists a basis b_{1}, \ldots, b_{n} of \mathbb{Q}^{n} for which $A b_{1} \in \operatorname{SPAN}_{\mathbb{Q}}\left(b_{1}\right)$ and $A b_{i} \in \operatorname{SPAN}_{\mathbb{Q}}\left(b_{i}, b_{i-1}\right)$ for $i=2, \ldots, n$.

All eigenvalues are in \mathbb{Q} so A is similar (over \mathbb{Q}) to a matrix J in Jordan Normal Form. This matrix J only has entries on the diagonal and on the line directly above the diagonal, in other words, $J e_{1} \in \operatorname{SPAN}_{\mathbb{Q}}\left(e_{1}\right)$ and $J e_{i} \in \operatorname{SPAN}_{\mathbb{Q}}\left(e_{i}, e_{i-1}\right)$ for $i>1$. The fact that J is similar to A means that there is some basis b_{1}, \ldots, b_{n} such that the matrix of the linear map $v \mapsto A v$ with respect to basis b_{1}, \ldots, b_{n} is J. For that basis we have the required property.
4. Let m be a positive integer and $f=x^{m}-2$. Show that f is irreducible. If A is an n by n matrix over \mathbb{Q} and $A^{m}=2 I$ then show that $m \mid n$.
f is 2-Eisenstein and hence irreducible in $\mathbb{Z}[x]$ (and thus irreducible in $\mathbb{Q}[x]$ by Gauss' lemma).
Since $f(A)=0$ it follows that f is divisible by the minimal polynomial of A. But f is irreducible so f equals the minimal polynomial. The characteristic polynomial divides a power of the minimal polynomial, so it divides a power of f. But if $g \mid f^{N}$ and g is monic, and f is irreducible, then g must also be a power of f. So the characteristic polynomial is a power of f. So its degree (which equals n) must be divisible by the degree of f (which equals m).
5. (bonus or take-home) (if exercises 1-4 are correct then you aced the test).

Let R be a PID and let M be a finitely generated R-module with annihilator $(f) \neq(0)$. Show that there exists a homomorphism $\phi: M \rightarrow M$ with $\phi \circ \phi=\phi$ and $\phi(M) \cong R /(f)$.

By the classification theorem, we may (up to isomorphism) write M as $R /\left(a_{1}\right) \oplus \cdots \oplus R /\left(a_{m}\right)$ with $a_{m}=f$. Now let $\phi: R /\left(a_{1}\right) \oplus \cdots \oplus R /\left(a_{m}\right) \rightarrow$ $R /\left(a_{1}\right) \oplus \cdots \oplus R /\left(a_{m}\right)$ send $\left(r_{1}, \ldots, r_{m}\right)$ to $\left(0, \ldots, 0, r_{m}\right)$. Then $\phi \circ \phi=\phi$ and $\phi(M)=\{0\} \oplus \cdots \oplus\{0\} \oplus R /\left(a_{m}\right) \cong R /\left(a_{m}\right)=R /(f)$.

