GRV II test 3.

- 1. Let f(x) be irreducible in $\mathbb{Q}[x]$ and g(x) be irreducible in K[x] where $[K:\mathbb{Q}] = d$. Suppose that g|f (although f is irreducible in $\mathbb{Q}[x]$, it might factor in a larger ring K[x]).
 - (a) Show that $\deg(f)$ divides $d \cdot \deg(g)$. Hint: extend K with a root of g.
 - (b) Take-home: If K is Galois over \mathbb{Q} then show that all irreducible factors of f in K[x] have the same degree.
- 2. Let $k = \mathbb{Q}(\zeta_n)$ and let $a \in k$ and $K = k(a^{1/n})$.
 - (a) Show that K/k is a Galois extension.
 - (b) Take-home: Show that $\operatorname{Gal}(K/k)$ is a subgroup of C_n .
- 3. Let K be the splitting field of $x^4 2$ over \mathbb{Q} . Hint for (a)+(b): you can count them without computing them.
 - (a) How many subfields $E \subset K$ have $[E : \mathbb{Q}] = 4$?
 - (b) How many of those subfields are Galois over \mathbb{Q} ?
- 4. Suppose that $K \subset \mathbb{C}$ is finite extension of \mathbb{Q} with degree $[K : \mathbb{Q}] = n$.
 - (a) If $\sqrt[d]{2} \in K$ then show that d|n.
 - (b) In the rest of this exercise, assume that K/\mathbb{Q} is Galois with group G. If $\sqrt[d]{2} \in K$ then show that $\phi(d)|n$ where ϕ is the Euler ϕ function.
 - (c) If G is abelian then show that $\sqrt[3]{2} \notin K$.
 - (d) If G is cyclic then show that $\zeta_8 \notin K$.
 - (e) Take-home: show that $[K: K \cap \mathbb{R}] \leq 2$.