GRV II test 3 answers

1. Let $f(x)$ be irreducible in $\mathbb{Q}[x]$ and $g(x)$ be irreducible in $K[x]$ where $[K: \mathbb{Q}]=d$. Suppose that $g \mid f$.
(a) Show that $\operatorname{deg}(f)$ divides $d \cdot \operatorname{deg}(g)$.

Let α be a root of g. Then $[K(\alpha): K]=\operatorname{deg}(g)$ because g is irreducible over K. Hence $[K(\alpha): \mathbb{Q}]=d \cdot \operatorname{deg}(g)$. Now α is also a root of f since g divides f. Then $[\mathbb{Q}(\alpha): \mathbb{Q}]=\operatorname{deg}(f)$ because f is irreducible over \mathbb{Q}. But $\mathbb{Q}(\alpha) \subseteq K(\alpha)$ and thus $[\mathbb{Q}(\alpha): \mathbb{Q}]$ divides $[K(\alpha): \mathbb{Q}]$.
(b) Take-home: If K is Galois over \mathbb{Q} then show that all irreducible factors of f in $K[x]$ have the same degree.
Let G be the Galois group. Let $P=\prod_{\sigma \in G} \sigma(g) \in K[x]$. If $\sigma \in G$ then $\sigma(g)$ is irreducible in $K[x]$ because σ is an automorphism of K. So all irreducible factors of P in $K[x]$ are conjugated to g, so they all have degree $\operatorname{deg}(g)$. But P is G-invariant so its coefficients lie in $K^{G}=\mathbb{Q}$. Hence $P \in \mathbb{Q}[x]$. The gcd of f and P is either 1 or f because f is irreducible in $\mathbb{Q}[x]$. But it is not 1 since g divides f and P. So this gcd is f, so $f \mid P$. So irreducible factors of f in $K[x]$ are also irreducible factors of P, and thus have degree $\operatorname{deg}(g)$.
Footnote: although we don't need this, $P=f^{e}$ where e is the number of σ 's for which $\sigma(g)=g$.
2. Let $k=\mathbb{Q}\left(\zeta_{n}\right)$ and let $a \in k$ and $K=k\left(a^{1 / n}\right)$.
(a) Show that K / k is a Galois extension.

Let $f=x^{n}-a \in k[x]$. Its splitting field over k contains $a^{1 / n}$ and thus contains K. Conversely, f splits over K because K contains all roots $\zeta_{n}^{i} a^{1 / n}$ of f. So K is a the splitting field over k, and is thus Galois over k (in char $=0$ we don't have to check if f is separable).
(b) Take-home: Show that $\operatorname{Gal}(K / k)$ is a subgroup of C_{n}.

If $a=0$ then this Galois group is $\{1\}$ which is a subgroup of any group. So assume $a \neq 0$. Let $G=\operatorname{Gal}(K / k)$. We define a group homomorphism $\phi: G \rightarrow \mathbb{Z} /(n)$ as follows. If $\sigma \in G$, then it sends $a^{1 / n}$ (a root of f) to some root of f. Any root of f can be written as $\zeta_{n}^{i} a^{1 / n}$ for some $i \in \mathbb{Z}$. Denote $[i]$ as the image of i in $\mathbb{Z} /(n)$. Then we define $\phi(\sigma)$ as $[i]$. This ϕ is injective because $[i]$ is uniquely determined by $\sigma\left(a^{1 / n}\right)=\zeta_{n}^{i} a^{1 / n}$. So ϕ maps G injectively to a subgroup of $\mathbb{Z} /(n) \cong C_{n}$.
Note: ϕ need not be surjective, for example, if $a=4$ and $n=4$ then $[K: k]<n$.
3. Let K be the splitting field of $x^{4}-2$ over \mathbb{Q}.

Hint for $(\mathrm{a})+(\mathrm{b})$: you can count them without computing them.
(a) How many subfields $E \subset K$ have $[E: \mathbb{Q}]=4$?

Five.
Recall from class and previous handouts that the Galois group of $x^{4}-2$ is the dihedral group $D_{2 \cdot 4}$. The fields E have $[K: E]=8 / 4=2$ so have to count the number of subgroups of order two, each of which contains e plus one element of order 2. So we just have to count the number of elements of order 2 in $D_{2 \cdot 4}$. These are: all 4 reflections, as well as the 180-degree rotation.

Note: in Exercise 3, counting subgroups is much easier than counting subfields, hence the hint.
(b) How many of those subfields are Galois over \mathbb{Q} ?

One. The only way a subgroup of order two $\{e, \sigma\}$ can be normal is when σ is in the center. Of the five elements of order 2, only one is in the center (namely: the 180-degree rotation).
4. Suppose that $K \subset \mathbb{C}$ is finite extension of \mathbb{Q} with degree $[K: \mathbb{Q}]=n$.
(a) If $\sqrt[d]{2} \in K$ then show that $d \mid n$.

If $\sqrt[d]{2} \in K$ then $\mathbb{Q}(\sqrt[d]{2}) \subseteq K$ but then $[K: \mathbb{Q}]=n$ must be divisible by $[\mathbb{Q}(\sqrt[d]{2}): \mathbb{Q}]=d$.
(b) In the rest of this exercise, assume that K / \mathbb{Q} is Galois with group G.

If $\sqrt[d]{2} \in K$ then show that $\phi(d) \mid n$ where ϕ is the Euler ϕ function.
If K is Galois over \mathbb{Q} and $\sqrt[d]{2} \in K$ then K must also contain all roots of its minpoly $x^{d}-2$ over \mathbb{Q}. Then $\zeta_{d} \sqrt[d]{2} \in K$, hence $\zeta_{d} \in K$, and hence $\mathbb{Q}\left(\zeta_{d}\right) \subseteq \in K$. Then $[K: \mathbb{Q}]=n$ must be divisible by $\left[\mathbb{Q}\left(\zeta_{d}\right): \mathbb{Q}\right]=\phi(d)$.
(c) If G is abelian then show that $\sqrt[3]{2} \notin K$.

If G is abelian, then any subgroup is normal, and thus any subfield is Galois over \mathbb{Q}. But $\mathbb{Q}(\sqrt[3]{2})$ is not Galois over \mathbb{Q}.
(d) If G is cyclic then show that $\zeta_{8} \notin K$.

If G is cyclic, then any quotient group of G is cyclic as well, and thus $\operatorname{Gal}(E / \mathbb{Q})$ is cyclic for any subfield E of K. Hence $\mathbb{Q}\left(\zeta_{8}\right)$ (whose Galois group is not cyclic) can not be a subfield of K.
(e) Take-home: show that $[K: K \bigcap \mathbb{R}] \leq 2$.

Complex conjugation is an element $\tau \in G$ and has order ≤ 2
(order 1 if $K \subseteq \mathbb{R}$, and order 2 otherwise).
Now $[K: K \bigcap \mathbb{R}]=\left[K: K^{<\tau>}\right]=|<\tau>| \leq 2$.
Note: if K is not Galois then complex conjugation need not be in Aut (K) (the complex conjugate of K could be $\neq K$) in which case $[K: K \bigcap \mathbb{R}]$ could be larger than 2 , for instance, if $K=\mathbb{Q}(\sqrt[4]{-2})$ then $[K: K \bigcap \mathbb{R}]=[K: \mathbb{Q}]=4$.

