
GRV II test 3 answers

1. Let f(x) be irreducible in Q[x] and g(x) be irreducible in K[x] where
[K : Q] = d. Suppose that g|f .

(a) Show that deg(f) divides d · deg(g).

Let α be a root of g. Then [K(α) : K] = deg(g) because g is ir-
reducible over K. Hence [K(α) : Q] = d · deg(g). Now α is also a
root of f since g divides f . Then [Q(α) : Q] = deg(f) because f is
irreducible over Q. But Q(α) ⊆ K(α) and thus [Q(α) : Q] divides
[K(α) : Q].

(b) Take-home: If K is Galois over Q then show that all irreducible
factors of f in K[x] have the same degree.

Let G be the Galois group. Let P =
∏
σ∈G σ(g) ∈ K[x]. If σ ∈ G

then σ(g) is irreducible in K[x] because σ is an automorphism of K.
So all irreducible factors of P in K[x] are conjugated to g, so they
all have degree deg(g). But P is G-invariant so its coefficients lie in
KG = Q. Hence P ∈ Q[x]. The gcd of f and P is either 1 or f
because f is irreducible in Q[x]. But it is not 1 since g divides f and
P . So this gcd is f , so f |P . So irreducible factors of f in K[x] are
also irreducible factors of P , and thus have degree deg(g).
Footnote: although we don’t need this, P = fe where e is the number
of σ’s for which σ(g) = g.

2. Let k = Q(ζn) and let a ∈ k and K = k(a1/n).

(a) Show that K/k is a Galois extension.

Let f = xn − a ∈ k[x]. Its splitting field over k contains a1/n and
thus contains K. Conversely, f splits over K because K contains all
roots ζina

1/n of f . So K is a the splitting field over k, and is thus
Galois over k (in char = 0 we don’t have to check if f is separable).

(b) Take-home: Show that Gal(K/k) is a subgroup of Cn.

If a = 0 then this Galois group is {1} which is a subgroup of any
group. So assume a 6= 0. Let G = Gal(K/k). We define a group
homomorphism φ : G→ Z/(n) as follows. If σ ∈ G, then it sends a1/n

(a root of f) to some root of f . Any root of f can be written as ζina
1/n

for some i ∈ Z. Denote [i] as the image of i in Z/(n). Then we define
φ(σ) as [i]. This φ is injective because [i] is uniquely determined
by σ(a1/n) = ζina

1/n. So φ maps G injectively to a subgroup of
Z/(n) ∼= Cn.
Note: φ need not be surjective, for example, if a = 4 and n = 4 then
[K : k] < n.

3. Let K be the splitting field of x4 − 2 over Q.
Hint for (a)+(b): you can count them without computing them.
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(a) How many subfields E ⊂ K have [E : Q] = 4?

Five.
Recall from class and previous handouts that the Galois group of
x4−2 is the dihedral group D2·4. The fields E have [K : E] = 8/4 = 2
so have to count the number of subgroups of order two, each of which
contains e plus one element of order 2. So we just have to count the
number of elements of order 2 in D2·4. These are: all 4 reflections,
as well as the 180-degree rotation.

Note: in Exercise 3, counting subgroups is much easier than counting
subfields, hence the hint.

(b) How many of those subfields are Galois over Q?

One. The only way a subgroup of order two {e, σ} can be normal is
when σ is in the center. Of the five elements of order 2, only one is
in the center (namely: the 180-degree rotation).

4. Suppose that K ⊂ C is finite extension of Q with degree [K : Q] = n.

(a) If d
√

2 ∈ K then show that d|n.

If d
√

2 ∈ K then Q( d
√

2) ⊆ K but then [K : Q] = n must be divisible
by [Q( d

√
2) : Q] = d.

(b) In the rest of this exercise, assume that K/Q is Galois with group G.

If d
√

2 ∈ K then show that φ(d)|n where φ is the Euler φ function.

If K is Galois over Q and d
√

2 ∈ K then K must also contain all
roots of its minpoly xd − 2 over Q. Then ζd

d
√

2 ∈ K, hence ζd ∈ K,
and hence Q(ζd) ⊆∈ K. Then [K : Q] = n must be divisible by
[Q(ζd) : Q] = φ(d).

(c) If G is abelian then show that 3
√

2 6∈ K.

If G is abelian, then any subgroup is normal, and thus any subfield
is Galois over Q. But Q( 3

√
2) is not Galois over Q.

(d) If G is cyclic then show that ζ8 6∈ K.

If G is cyclic, then any quotient group of G is cyclic as well, and thus
Gal(E/Q) is cyclic for any subfield E of K. Hence Q(ζ8) (whose
Galois group is not cyclic) can not be a subfield of K.

(e) Take-home: show that [K : K
⋂

R] ≤ 2.

Complex conjugation is an element τ ∈ G and has order ≤ 2
(order 1 if K ⊆ R, and order 2 otherwise).
Now [K : K

⋂
R] = [K : K<τ>] = | < τ > | ≤ 2.

Note: if K is not Galois then complex conjugation need not be in
Aut(K) (the complex conjugate of K could be 6= K) in which case
[K : K

⋂
R] could be larger than 2, for instance, if K = Q( 4

√
−2)

then [K : K
⋂
R] = [K : Q] = 4.
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