Fields, take home questions.

1. Let $f \in \mathbb{Q}[x]$ be an irreducible polynomial of degree 5 and let $g \in \mathbb{Q}[x]$ be an irreducible polynomial of degree 7 . Let $\alpha \in \mathbb{C}$ be a root of f and $\beta \in \mathbb{C}$ be a root of g. Let $K_{1}=\mathbb{Q}(\alpha), K_{2}=\mathbb{Q}(\beta)$ and $K_{3}=\mathbb{Q}(\alpha, \beta)$.
(a) Give: $\left[K_{1}: \mathbb{Q}\right],\left[K_{2}: \mathbb{Q}\right],\left[K_{3}: \mathbb{Q}\right],\left[K_{3}: K_{1}\right]$ and $\left[K_{3}: K_{2}\right]$.
(b) Is f reducible or irreducible in $K_{1}[x]$? Why?
(c) Is f reducible or irreducible in $K_{2}[x]$? Why?
2. Let p be a prime number, let $S=\{f(x) \in \mathbb{Q}[x] \mid f(x) \notin \mathbb{Q}$, $\operatorname{deg}(f)<p\}$. Let $m(x)$ be any irreducible polynomial in $\mathbb{Q}[x]$ of degree p, and let $f(x)$ be any element of S. Show that there exists a unique $g(x) \in S$ for which $g(f(x))-x$ is divisible by $m(x)$.
Start as follows: Let α be a root of $m(x)$, let $\beta=f(\alpha)$, now prove that there exists a polynomial $g(x) \in S$ with $g(\beta)=\alpha$.
3. Let K be the splitting field of the polynomial $x^{6}-2$ over \mathbb{Q}. The Galois group G is isomorphic to $D_{2.6}$ and can be written using two generators as follows $G=<\sigma, \tau>$, where σ is defined by $\sigma(\sqrt[6]{2})=\zeta_{6} \sqrt[6]{2}, \sigma\left(\zeta_{6}\right)=\zeta_{6}$, and τ is defined by $\tau(\sqrt[6]{2})=\sqrt[6]{2}, \tau\left(\zeta_{6}\right)=\zeta_{6}^{5}$ (note: τ is complex conjugation). For each of the following subgroups H of G, write down the corresponding subfield K_{H}, the fixed field of H. You do not need to give proofs.
(a) $H_{1}=G($ a group of order 12)
(b) $H_{2}=\{1\}$ (a group of order 1)
(c) $H_{3}=\langle\sigma\rangle$ (a group of order 6)
(d) $H_{4}=<\tau>$ (a group of order 2$)$
(e) $H_{5}=<\sigma^{2}>$ (a group of order 3)
(f) $H_{6}=<\sigma^{2}, \tau \sigma>($ a group of order 6$)$
4. Let K and G be as in the previous question. What is the group $H \leq G$ belonging to the subfield $\mathbb{Q}(\sqrt{2})$?
Hint: If $\sqrt{2}$ is an element of one of the fields you computed in the previous question, then the group H_{i} in that question will be a subgroup of the group H you need to find for this question. First check if this hint already gives you enough elements of H to generate H, if so, then write down those generators and you're done, if not, then you need to find more generators.
