Fields, take home questions.

- 1. Let $f \in \mathbb{Q}[x]$ be an irreducible polynomial of degree 5 and let $g \in \mathbb{Q}[x]$ be an irreducible polynomial of degree 7. Let $\alpha \in \mathbb{C}$ be a root of f and $\beta \in \mathbb{C}$ be a root of g. Let $K_1 = \mathbb{Q}(\alpha), K_2 = \mathbb{Q}(\beta)$ and $K_3 = \mathbb{Q}(\alpha, \beta)$.
 - (a) Give: $[K_1 : \mathbb{Q}], [K_2 : \mathbb{Q}], [K_3 : \mathbb{Q}], [K_3 : K_1] \text{ and } [K_3 : K_2].$
 - (b) Is f reducible or irreducible in $K_1[x]$? Why?
 - (c) Is f reducible or irreducible in $K_2[x]$? Why?
- 2. Let p be a prime number, let $S = \{f(x) \in \mathbb{Q}[x] | f(x) \notin \mathbb{Q}, \deg(f) < p\}$. Let m(x) be any irreducible polynomial in $\mathbb{Q}[x]$ of degree p, and let f(x) be any element of S. Show that there exists a unique $g(x) \in S$ for which g(f(x)) - x is divisible by m(x). Start as follows: Let α be a root of m(x), let $\beta = f(\alpha)$, now prove that there exists a polynomial $g(x) \in S$ with $g(\beta) = \alpha$.
- 3. Let K be the splitting field of the polynomial $x^6 2$ over \mathbb{Q} . The Galois group G is isomorphic to $D_{2\cdot 6}$ and can be written using two generators as follows $G = \langle \sigma, \tau \rangle$, where σ is defined by $\sigma(\sqrt[6]{2}) = \zeta_6\sqrt[6]{2}, \sigma(\zeta_6) = \zeta_6$, and τ is defined by $\tau(\sqrt[6]{2}) = \sqrt[6]{2}, \tau(\zeta_6) = \zeta_6^5$ (note: τ is complex conjugation). For each of the following subgroups H of G, write down the corresponding subfield K_H , the fixed field of H. You do not need to give proofs.
 - (a) $H_1 = G$ (a group of order 12)
 - (b) $H_2 = \{1\}$ (a group of order 1)
 - (c) $H_3 = <\sigma >$ (a group of order 6)
 - (d) $H_4 = \langle \tau \rangle$ (a group of order 2)
 - (e) $H_5 = \langle \sigma^2 \rangle$ (a group of order 3)
 - (f) $H_6 = \langle \sigma^2, \tau \sigma \rangle$ (a group of order 6)
- 4. Let K and G be as in the previous question. What is the group $H \leq G$ belonging to the subfield $\mathbb{Q}(\sqrt{2})$?

Hint: If $\sqrt{2}$ is an element of one of the fields you computed in the previous question, then the group H_i in that question will be a subgroup of the group H you need to find for this question. First check if this hint already gives you enough elements of H to generate H, if so, then write down those generators and you're done, if not, then you need to find more generators.