
Fields.

1. Let f ∈ Q[x] be an irreducible polynomial of degree 5 and let g ∈ Q[x] be
an irreducible polynomial of degree 7. Let α ∈ C be a root of f and β ∈ C
be a root of g. Let K1 = Q(α), K2 = Q(β) and K3 = Q(α, β).

(a) Give: [K1 : Q], [K2 : Q], [K3 : Q], [K3 : K1] and [K3 : K2].

ANSWER: 5, 7, 35, [K3 : Q]/[K1 : Q] = 35/5 = 7, [K3 : Q]/[K2 :
Q] = 35/7 = 5.
The reason that [K3 : Q] is 35 is because it must be divisible by
[K1 : Q] and [K2 : Q] since K1 and K2 are subfields of K3. So it
must be divisible by 35. It can not be larger than 35 because that
would make [K3 : K1] larger than 7, so that would make the minpoly
of β over K1 have higher degree than its minpoly over Q, which can
not be.

(b) Is f reducible or irreducible in K1[x]? Why?

ANSWER: Reducible because it has a root in K1.

(c) Is f reducible or irreducible in K2[x]? Why?

ANSWER: Irreducible because [K2(α) : K2] = 5 (see part (a)), so
the minpoly of α over K2 has degree 5. Then this minpoly can only
be f . But a minpoly is always irreducible.

2. Let p be a prime number, let S = {f(x) ∈ Q[x] | f(x) 6∈ Q, deg(f) < p}.
Let m(x) be any irreducible polynomial in Q[x] of degree p, and let f(x)
be any element of S. Show that there exists a unique g(x) ∈ S for which
g(f(x))− x is divisible by m(x).
Start as follows: Let α be a root of m(x), let β = f(α), now prove that
there exists a polynomial g(x) ∈ S with g(β) = α.

ANSWER: Since f(x) is not divisible by m(x), the number β is not 0,
but it is also not in Q because f(x) is not a constant. So Q(β) 6= Q, but it
is a subfield of Q(α) since β ∈ Q(α). Now [Q(α) : Q] is a prime number, so
there can not be a proper intermediate field. So when Q 6= Q(β) ⊆ Q(α)
then Q(β) must be Q(α), so α ∈ Q(β). Then there must exist a polynomial
g of degree < p with g(β) = α. So g(f(α)) − α = 0 and so α is a root of
g(f(x))− x. Then g(f(x))− x must be dvisible by the minpoly of α.

3. Let K be the splitting field of the polynomial x6 − 2 over Q. The Galois
group G is isomorphic to D2·6 and can be written using two generators as
follows G =< σ, τ >, where σ is defined by σ( 6

√
2) = ζ6

6
√

2, σ(ζ6) = ζ6, and
τ is defined by τ( 6

√
2) = 6

√
2, τ(ζ6) = ζ56 (note: τ is complex conjugation).

For each of the following subgroups H of G, write down the corresponding
subfield KH , the fixed field of H. You do not need to give proofs.

(a) H1 = G (a group of order 12)

ANSWER: Q



(b) H2 = {1} (a group of order 1)

ANSWER: K

(c) H3 =< σ > (a group of order 6)

ANSWER: Q(ζ6) ( this equals Q(
√
−3) ).

(d) H4 =< τ > (a group of order 2)

ANSWER: Q( 6
√

2).

(e) H5 =< σ2 > (a group of order 3)

ANSWER: Q(( 6
√

2)3, ζ6) = Q(
√

2,
√
−3).

(f) H6 =< σ2, τσ > (a group of order 6)

ANSWER: The degree-2 subfields of the field in exercise (e) are:
Q(( 6
√

2)3) = Q(
√

2), Q(ζ6) = Q(
√
−3), and Q(

√
−6). Now τσ sends

( 6
√

2)3 to −( 6
√

2)3, and sends ζ6 to its complex conjugate, so those
first two fields are not the fixed fields. Then the only remaining
option is that the fixed field is Q(

√
−6).

4. Let K and G be as in the previous question. What is the group H ≤ G
belonging to the subfield Q(

√
2)?

Hint: If
√

2 is an element of one of the fields you computed in the previous
question, then the group Hi in that question will be a subgroup of the
group H you need to find for this question. First check if this hint already
gives you enough elements of H to generate H, if so, then write down those
generators and you’re done, if not, then you need to find more generators.

ANSWER:
√

2 is fixed by σ2 but also by complex conjugation τ , so
H =< σ2, τ >.


