Fields.

1. Let $f \in \mathbb{Q}[x]$ be an irreducible polynomial of degree 5 and let $g \in \mathbb{Q}[x]$ be an irreducible polynomial of degree 7 . Let $\alpha \in \mathbb{C}$ be a root of f and $\beta \in \mathbb{C}$ be a root of g. Let $K_{1}=\mathbb{Q}(\alpha), K_{2}=\mathbb{Q}(\beta)$ and $K_{3}=\mathbb{Q}(\alpha, \beta)$.
(a) Give: $\left[K_{1}: \mathbb{Q}\right],\left[K_{2}: \mathbb{Q}\right],\left[K_{3}: \mathbb{Q}\right],\left[K_{3}: K_{1}\right]$ and $\left[K_{3}: K_{2}\right]$.

ANSWER: $5,7,35,\left[K_{3}: \mathbb{Q}\right] /\left[K_{1}: \mathbb{Q}\right]=35 / 5=7,\left[K_{3}: \mathbb{Q}\right] /\left[K_{2}:\right.$ $\mathbb{Q}]=35 / 7=5$.
The reason that $\left[K_{3}: \mathbb{Q}\right]$ is 35 is because it must be divisible by [$\left.K_{1}: \mathbb{Q}\right]$ and $\left[K_{2}: \mathbb{Q}\right]$ since K_{1} and K_{2} are subfields of K_{3}. So it must be divisible by 35 . It can not be larger than 35 because that would make $\left[K_{3}: K_{1}\right]$ larger than 7 , so that would make the minpoly of β over K_{1} have higher degree than its minpoly over \mathbb{Q}, which can not be.
(b) Is f reducible or irreducible in $K_{1}[x]$? Why?

ANSWER: Reducible because it has a root in K_{1}.
(c) Is f reducible or irreducible in $K_{2}[x]$? Why?

ANSWER: Irreducible because $\left[K_{2}(\alpha): K_{2}\right]=5$ (see part (a)), so the minpoly of α over K_{2} has degree 5 . Then this minpoly can only be f. But a minpoly is always irreducible.
2. Let p be a prime number, let $S=\{f(x) \in \mathbb{Q}[x] \mid f(x) \notin \mathbb{Q}$, $\operatorname{deg}(f)<p\}$. Let $m(x)$ be any irreducible polynomial in $\mathbb{Q}[x]$ of degree p, and let $f(x)$ be any element of S. Show that there exists a unique $g(x) \in S$ for which $g(f(x))-x$ is divisible by $m(x)$.
Start as follows: Let α be a root of $m(x)$, let $\beta=f(\alpha)$, now prove that there exists a polynomial $g(x) \in S$ with $g(\beta)=\alpha$.
ANSWER: Since $f(x)$ is not divisible by $m(x)$, the number β is not 0 , but it is also not in \mathbb{Q} because $f(x)$ is not a constant. So $\mathbb{Q}(\beta) \neq \mathbb{Q}$, but it is a subfield of $\mathbb{Q}(\alpha)$ since $\beta \in \mathbb{Q}(\alpha)$. Now $[\mathbb{Q}(\alpha): \mathbb{Q}]$ is a prime number, so there can not be a proper intermediate field. So when $\mathbb{Q} \neq \mathbb{Q}(\beta) \subseteq \mathbb{Q}(\alpha)$ then $\mathbb{Q}(\beta)$ must be $\mathbb{Q}(\alpha)$, so $\alpha \in \mathbb{Q}(\beta)$. Then there must exist a polynomial g of degree $<p$ with $g(\beta)=\alpha$. So $g(f(\alpha))-\alpha=0$ and so α is a root of $g(f(x))-x$. Then $g(f(x))-x$ must be dvisible by the minpoly of α.
3. Let K be the splitting field of the polynomial $x^{6}-2$ over \mathbb{Q}. The Galois group G is isomorphic to $D_{2.6}$ and can be written using two generators as follows $G=<\sigma, \tau>$, where σ is defined by $\sigma(\sqrt[6]{2})=\zeta_{6} \sqrt[6]{2}, \sigma\left(\zeta_{6}\right)=\zeta_{6}$, and τ is defined by $\tau(\sqrt[6]{2})=\sqrt[6]{2}, \tau\left(\zeta_{6}\right)=\zeta_{6}^{5}$ (note: τ is complex conjugation). For each of the following subgroups H of G, write down the corresponding subfield K_{H}, the fixed field of H. You do not need to give proofs.
(a) $H_{1}=G$ (a group of order 12)

ANSWER: \mathbb{Q}
(b) $H_{2}=\{1\}$ (a group of order 1)

ANSWER: K
(c) $H_{3}=<\sigma>$ (a group of order 6)

ANSWER: $\mathbb{Q}\left(\zeta_{6}\right)$ (this equals $\left.\mathbb{Q}(\sqrt{-3})\right)$.
(d) $H_{4}=<\tau>($ a group of order 2$)$

ANSWER: $\mathbb{Q}(\sqrt[6]{2})$.
(e) $H_{5}=<\sigma^{2}>($ a group of order 3$)$

ANSWER: $\mathbb{Q}\left((\sqrt[6]{2})^{3}, \zeta_{6}\right)=\mathbb{Q}(\sqrt{2}, \sqrt{-3})$.
(f) $H_{6}=<\sigma^{2}, \tau \sigma>($ a group of order 6$)$

ANSWER: The degree-2 subfields of the field in exercise (e) are: $\mathbb{Q}\left((\sqrt[6]{2})^{3}\right)=\mathbb{Q}(\sqrt{2}), \mathbb{Q}\left(\zeta_{6}\right)=\mathbb{Q}(\sqrt{-3})$, and $\mathbb{Q}(\sqrt{-6})$. Now $\tau \sigma$ sends $(\sqrt[6]{2})^{3}$ to $-(\sqrt[6]{2})^{3}$, and sends ζ_{6} to its complex conjugate, so those first two fields are not the fixed fields. Then the only remaining option is that the fixed field is $\mathbb{Q}(\sqrt{-6})$.
4. Let K and G be as in the previous question. What is the group $H \leq G$ belonging to the subfield $\mathbb{Q}(\sqrt{2})$?
Hint: If $\sqrt{2}$ is an element of one of the fields you computed in the previous question, then the group H_{i} in that question will be a subgroup of the group H you need to find for this question. First check if this hint already gives you enough elements of H to generate H, if so, then write down those generators and you're done, if not, then you need to find more generators.
ANSWER: $\sqrt{2}$ is fixed by σ^{2} but also by complex conjugation τ, so $H=<\sigma^{2}, \tau>$.

