
GRV, facts about field extensions.

1. Let F be a field and let α ∈ K where K is a field extension of F (field
extension means: F and K are fields, and F ⊆ K).
The following conditions are equivalent, and we say that α is algebraic
over F when these equivalent conditions hold:

(a) There is a nonzero polynomial f(x) ∈ F [x] for which f(α) = 0.

(b) There is an irreducible polynomial f(x) ∈ F [x] for which f(α) = 0.

Notation: this polynomial is denoted as mα,F (x). It is the monic
polynomial f(x) ∈ F [x] of minimal degree for which f(α) = 0.

(c) F [α] = F (α).

(d) F [α] is a field.

(e) [F (α) : F ] is finite.

Definition: [F (α) : F ] is the dimension of F (α) as a vector space over
F . If this dimension n = [F (α) : F ] is finite (if α is algebraic) then
n = degree(mα,F (x)). We can use the minimal polynomial mα,F (x)
to write αn, αn+1, . . . as F -linear combinations of 1, α, . . . , αn−1. So
1, α, . . . , αn−1 will be a basis of F [α] = F (α) as an F -vector space.
Another important fact is:

F (α) ∼= F [x]/(mα,F (x)) (1)

2. Given a field F and an element α ∈ K where K is a field extension of
F , how do we find, if it exists, a nonzero polynomial f ∈ F [x] for which
f(α) = 0?
Answer: Compute 1, α, α2, . . . and try to find a linear relation. If

∑
aiα

i =
0 then f(x) =

∑
aix

i.
For example, suppose that α = a+b where a is a solution of x2 +x+1 = 0
(i.e. a2 = −a− 1) and b = 21/3 (i.e. b is a solution of x3 − 2, so b3 = 2).
Lets take F = Q. Looking at powers of a, you see that a2, a3, . . . can
be simplified to Q-linear combinations of 1, a. Likewise, b3, b4, . . . can be
simplified to Q-linear combinations of 1, b, b2. Therefore, any product of
the form akbl can be simplified to a Q-linear combination of these six
numbers: B = {aibj | i ∈ {0, 1}, j ∈ {0, 1, 2}}. So if we think of Q[a, b]
(same as Q(a, b), use item 1c twice) as a Q-vector space then B is a basis.
Then you compute 1, α, α2, . . . and if you expand these then you get com-
binations of akbl. When you simplify those, you get linear combinations
of the elements of B. But since B has only 6 elements, the moment you
write down 7 linear combinations of elements of B, you must get a linear
dependence. Hence, 1, α, . . . , α6 must be linearly dependent over Q. So we
use linear algebra (find linear equations for the ai and then solve them) to
find such a linear relation

∑n
i=0 aiα

i = 0 (in this example n = 6 suffices).
Then we can take p(x) =

∑n
i=0 aix

i.
In this example, we find p(x) = x6 + 3x5 + 6x4 + 3x3 + 9x+ 9.



3. Given a field F and an element α ∈ K where K is a field extension of F
how do we find, if it exists, the minimal polynomial mα,F (x).
Answer: Same as in item 2, except that we have to make sure that the n
in the linear relation

∑n
i=0 aiα

i = 0 is as small as we can make it. In the
example in item 2, for mα,Q we find the same polynomial p(x). In general,
for computing a minpoly we do have to be more careful than we need to be
in item 2. Take for instance β = ab where a, b are as in item 2. The same
reasoning shows that β0, . . . , β6 must be linearly dependent; after all, these
seven numbers β0, . . . , β6 are linear combinations of B, and B has only
six elements. However, for finding a linear relation between β0, β1, . . ., the
number 6 is not minimal, because in fact β0, . . . , β3 are already linearly
dependent over Q. The minpoly for β is x3 − 2 (you can see this when
you realize that a3 = 1).
Since β has the same minpoly over Q as the number b, we get from the
formula (1) above that both Q(β) and Q(b) are isomorphic to Q[x]/(x3−2).
Therefore these two fields must also be isomorphic to each other: Q(β) ∼=
Q(b) despite the fact that the two fields are not equal (one of them is a
subfield of R while the other is not).

As another example, lets compute a polynomial for the same α = a+ b as
in item 2, but this time F = Q(a). If we do not care about minimality,
then we can give the same polynomial as in item 2. However, if we look
for a polynomial of minimal degree, then we can use this larger field F to
give a lower degree polynomial. We can show that x3−2 is still irreducible
over F using equation (2) in item 5c below. Hence it must be the minpoly
of b over F . But then (x− a)3− 2 ∈ F [x] must also be irreducible since it
is simply a shift of x3 − 2, and since this polynomial has α as a solution,
it will be the minpoly of α over F .

4. Let K be a field extension of F . Definitions

(a) K is finite over F when [K : F ] is finite.

(b) K is algebraic over F when every α ∈ K is algebraic over F .

(c) K is finitely generated over F if there exist finitely many α1, . . . , αn ∈
K for which K = F (α1, . . . , αn).

5. Let F ⊆ K ⊆ L be fields.
Notation: K/F does not mean K modulo F or something like it. When
we write K/F that means that we are looking at the extension F ⊆ K.

(a) K/F is finite ⇐⇒ K/F is algebraic and finitely generated.

(b) L/F is algebraic ⇐⇒ both L/K and K/F are algebraic.

(c) L/F is finite ⇐⇒ both L/K and K/F are finite.

This says that [L : F ] is finite iff both [L : K] and [K : F ] are finite.
In fact, we can say even more than that, namely the following:
If B1 is a basis of L as a K-vector space, and if B2 is a basis of



K as an F -vector space, then we get a basis of L as an F -vector
space by multiplying every element of B1 by every element of B2. In
particular, this means that

[L : F ] = [L : K] · [K : F ]. (2)

This formula implies the impossibility of trisecting an angle with
ruler and compass constructions because, starting with points with
rational x and y coefficients, the coefficients of the points we can
encounter with n ruler/compass constructions are elements of a tower
of n field extensions Q = F0 ⊆ F1 ⊆ F2 ⊆ . . . ⊆ Fn where [Fi+1 : Fi]
is always either one or two (computing the coordinates of a point
in one ruler/compass construction involves solving an equation of
degree either 1 or 2). But trisections can produce a point with an
x-coordinate such as α = cos(2π/9). Now [Fn : Q] is a power of 2 so
it is not divisible by [Q(α) : Q] = 3. Then equation (2) shows that
Q(α) can not be a subfield of Fn, which implies that α 6∈ Fn. Hence
α is not constructible with n ruler/compass constructions, for any n.

6. Let K1,K2 be intermediate fields of K/F (so F ⊆ Ki ⊆ K for i = 1, 2).
Notation: K1K2 is the smallest subfield of K that contains K1 and K2.
Then

[K1K2 : F ] ≤ [K1 : F ] · [K2 : F ] (3)

Proof: Assume n = [K1 : F ] and m = [K2 : F ] are finite. Let b1, . . . , bn
be a basis of K1 as F -vector space, and c1, . . . , cm be a basis of K2 as
F -vector space. Then S = {bicj | i ∈ {1, . . . , n}, j ∈ {1, . . . ,m} } is a
spanning set for K1K2 with nm elements. Now [K1K2 : F ] is the number
of elements of a basis, and this is always ≤ to the number of elements of
a spanning set.
Note: if S is linearly independent, then the ≤ becomes an equality. But
S might be dependent (e.g. when K1

⋂
K2 6= F ).

7. If α and β are algebraic over F then so are α + β, α − β, αβ, as well as
α/β if β 6= 0.
In particular, if you take the subset S ⊆ K of all elements of K that are
algebraic over F , then this set S is closed under +,−, ·, / and hence this S
is a field. This S is called the algebraic closure of F in K, it is the largest
subfield of K that is still algebraic over F .

Note: the example in item 2 explains computationally why α + β should
be algebraic over F when α, β are algebraic over F .



8. A field K is called algebraically closed when the following equivalent con-
ditions hold:

(a) Every non-constant polynomial f ∈ K[x] has at least one root in K.

(b) Every non-constant polynomial f ∈ K[x] splits over K (meaning:
can be written as a product of linear factors with coefficients in K).

(c) Whenever K ⊆ L is an algebraic extension we have K = L.

9. An algebraic closure of F is a field, lets denote it as F , with the following
properties:

(a) F is an algebraic extension of F , and

(b) F is algebraically closed

For any field F we can prove (if you accept the axiom of choice) that an
algebraic closure exists, and that it is unique up to isomorphism, so we
can call it the algebraic closure. We can think of F as “the largest field
that is algebraic over F”. But we can also describe F as “the smallest
algebraically closed field that contains F”.

Note: If F ⊆ K then these two fields

(a1) The algebraic closure of F , and

(a2) The algebraic closure of F in K

are not the same, because (a1) is the largest algebraic extension of F that
can be found anywhere, whereas (a2) is the largest algebraic extension of
F that can be found inside of K. The two field (a1),(a2) are the same if
and only if every non-constant polynomial in F [x] splits over K.
For instance, Q is not the same as the algebraic closure of Q in R, but it
is the same as (isomorphic to) the algebraic closure of Q in C.

10. A field F is the algebraic closure of F when it satisfies these two properties:

(a) F is an algebraic extension of F , and

(b) Every non-constant polynomial in F [x] splits in F [x].

Note: condition (10b) appears to be weaker than condition (9b), which
says that every non-constant polynomial in F [x] splits in F [x]. However,
it turns out that, if we assume condition (9a), then the two conditions
(9b) and (10b) become equivalent.

11. (you don’t really need to know this). Construction of F . Let S be the set
of all monic irreducible polynomials in F [x]. For each polynomial fn ∈ S,
if the degree is d then introduce d new variables, say un,1, . . . , un,d, and

compute f − (x−un,1) · · · (x−un,d) and write it as
∑d−1
k=0 vn,kx

k for some
polynomials vn,k ∈ F [un,1, . . . , un,d]. For instance, vn,0 is the constant
term of fn minus the product of the −un,i, i = 1, . . . , d. Now let R be



the polynomial ring over F generated by all these variables vn,i (for all
fn ∈ S and all i = 1, . . . ,degree(fn)). Let I be the ideal in R generated
by all these polynomials vn,k. Then we can embed F ⊆ R/I, and every
irreducible polynomial fn ∈ F [x] will split in the ring (R/I)[x]. Problem
is, this ring R/I will not be a field. To fix this, let M be a maximal ideal
that contains I (to prove that such M exists, we need Zorn’s lemma, which
is equivalent to the Axiom of Choice). Then again every polynomial in
F [x] splits over R/M , but this time R/M is a field. It is generated over F
by the un,i +M . Although there are infinitely many generators, they are
all algebraic over F (by construction, x− (un,i +M) is a linear factor of
fn(x) and so un+i+M is a root of f(x)) and that makes R/M an algebraic
extension of F . Then R/M is the algebraic closure by item 10.
Take for example F = Q, and S = {f1, f2 . . .} is the set of all irreducible
polynomials in Q[x]. For instance, f1 = x2+2x+6, f2 = x2+1, f3 = x3−2,
etc. Now f1− (x−u1,1)(x−u1,2) = x0 · (6−u1,1u1,2)+x1 · (2+u1,1 +u1,2)
and repeating this for every other irreducible polynomial f2, f3, . . . we get
R/I = Q[u1,1, u1,2, u2,1, . . .]/(6 − u1,1u1,2, 2 + u1,1 + u1,2, . . .). Looking
at I it is clear that in the ring (R/I)[x] we can write f1 as a product of
linear factors f1 = (x − (u1,1 + I))(x − (u1,2 + I)), and the same is true
for f2, f3, . . . etc. If I ⊆M then we can do the same in (R/M)[x].

12. If f ∈ F [x] is a non-constant polynomial then a field K is called a splitting
field for f over F if

(a) F ⊆ K
(b) f splits into linear factors over K

(c) If F ⊆ K ′ ( K then f does not split into linear factors over K ′.

We get an equivalent definition if we replace (c) by:

(c’) K = F (α1, . . . , αn) where α1, . . . , αn are the roots of f in K.

Given two splitting fields of f over F , we can prove them to be isomorphic,
and so we can call it the splitting field of f over F . We can think of the
splitting field as the smallest extension of F over which f splits, that is,
the smallest field that contains both F and all roots of f . Looking at (c’)
we see that the splitting field of f over F is an algebraic extension of F .

13. If S is a set of non-constant polynomials in F [x], then the splitting field of
S over F is the smallest algebraic extension of F over which every f ∈ S
splits into linear factors (such a field must exist, see item 11).

As an example, the splitting field of S = {x2−2, x2−3, x2−5, x2−7, . . .}
over Q is Q(

√
2,
√

3,
√

5,
√

7, . . .).



14. A field extension F ⊆ K is called a normal extension if the following two
equivalent conditions hold:

(a) there is some set of polynomials S ⊆ F [x] such that K is the splitting
field of S over F .

(b) K/F is algebraic, and for every irreducible polynomial f(x) ∈ F [x]
we have the following

f(x) has a root in K ⇐⇒ f(x) splits over K.

In other words: if f is irreducible in F [x], and if K contains at least
one root of f , then it has to contain every root of f ! That’s a rather
strong condition, and this makes it easy to give an example of an
extension that is algebraic but not normal: Q ⊆ Q(21/3) is not nor-
mal since it contains one root (but not every root) of the irreducible
polynomial x3 − 2 ∈ Q[x].
However, using condition (a) we can also easily give examples of
extensions that are normal, just take the splitting field of some poly-
nomial. For instance the field Q(a, b) in item 2 is the splitting field
of a polynomial over Q, namely x3 − 2 which factors as (x − b)(x −
ab)(x− a2b). Hence this Q(a, b) is a normal extension of Q.

15. If K is the splitting field of f(x) over F then [K : F ] ≤ n! where n is the
degree of f(x).

To see this, let α ∈ be a root of f(x) and let d = [F (α) : F ]. Since
f(α) = 0 and f(x) ∈ F [x] it follows the minpoly of α over F must divide
f(x). Hence, d, the degree of this minpoly, is at most n. Now let g(x) =
f(x)/(x − α) ∈ F (α)[x]. It has degree n − 1 and so by induction, the
splitting field of g(x) over F (α) has degree at most (n − 1)! over F (α).
But this splitting field is just K, so we get [K : F (α)] ≤ (n − 1)!. Then
[K : F ] = [K : F (α)] · [F (α) : F ] ≤ (n− 1)! · d ≤ n!.

Note that if the ≤ n! is an equality then d will have to be equal to n, in
other words, f(x) is irreducible over F . Furthermore, g(x) will have to
be irreducible over F (α) (otherwise the ≤ (n− 1)! won’t be an equality)
etc.

16. A polynomial f ∈ F [x]− F is called square-free in F [x] if there does not
exist a polynomial g ∈ F [x]− F such that g2 divides f . It is clear that:

f irreducible in F [x] =⇒ f is square-free in F [x]

17. Let K be a splitting field of f . A polynomial f ∈ F [x] − F is called
separable if the following equivalent conditions hold:

(a) The number of distinct roots of f in the splitting K equals the degree.

(b) f has no multiple roots (roots with multiplicity > 1) in the splitting
field K.



(c) The gcd of f and the derivative f ′ is a constant (it does not matter if
you compute this in F [x] or in K[x], the result of the gcd computation
is the same).

(d) f is square-free in K[x]
(note: This condition is stronger than the condition that f is square-
free in F [x] because K is a bigger field).

18. If the characteristic of F is 0, or if F is a finite field, then the following
is true for any f ∈ F [x]

f is square-free in F [x]⇐⇒ f is separable.

Remarks: In general “separable” is stronger than “square-free in F [x]”
because separable means not only square-free in F [x] but also means
“square-free in K[x] for any field extension K of F”. For example, if
F = Fp(t) then you can find a polynomial f = xp − t ∈ F [x] that is
square-free and even irreducible in F [x] but not separable. The splitting
field is K = Fp( p

√
t) and in K[x] we find f = (x− p

√
t)p. So f is square-free

in F [x] but is not separable because f is not square-free in K[x].

19. If the characteristic of F is 0, or if F is a finite field, and if K is an
extension of F then the following are equivalent

(a) K is a normal extension of F (this was defined in item 14a)

(b) K is the splitting field of some set of separable polynomials in F [x].

Proof: Take the set S from item 14a. For each polynomial f ∈ S ⊆ F [x],
we can make it square-free as follows: as long as g2 divides f for some
g ∈ F [x], replace f by f/g. Then f/g and f have the same roots, so the
splitting fields do not change. We can repeat this until all the f ’s in S
have become square-free. Then by item 18 these f ’s are also separable.
Note: The assumption made on F is relevant, without it we get counter
examples such as F = Fp(t), S = {xp − t}.

20. Definition: Aut(K) is the group of all automorphisms of K.

21. Definition: An automorphism of K/F (automorphism of K over F ) is an
automorphism σ : K → K that acts trivially on F (i.e. σ(a) = a for all
a ∈ F ).
Definition: Aut(K/F ) is the group of all automorphisms of K over F .

22. Some easy things to note: Aut(K/F ) ≤ Aut(K), i.e. Aut(K/F ) is a
subgroup of Aut(K). Also:

F1 ⊆ F2 =⇒ Aut(K/F2) ≤ Aut(K/F1)

Finally, if Q ⊆ K and σ ∈ Aut(K), then σ acts trivially on 1 (i.e. σ(1) = 1)
and so σ must also act trivially on the subfield of K that is generated by
1, i.e. σ acts trivially on Q. Hence, σ ∈ Aut(K/Q). So we find

Aut(K/Q) = Aut(K).



Another trivial remark is that

Aut(K/K) = {1}.

23. Let K/F be a finite extension and let |Aut(K/F )| denote the order, the
number of elements, of the group Aut(K/F ). The following is always true:

|Aut(K/F )| ≤ [K : F ] (4)

Moreover, the following are equivalent

(a) Aut(K/F ) has [K : F ] elements

(b) K is the splitting field of some separable polynomial in F [x]

24. Definition: Let K/F be a finite extension. Then K/F is called a Galois
extension if item 23a (and hence item 23b) is true. In this case, we denote
Aut(K/F ) as Gal(K/F ) and call this the Galois group.

25. In this item we assume that either char(F ) = 0, or F is a finite field. We
also assume that [K : F ] <∞. Then using item 19 you see that you may
ignore the word “separable” in item 23b, so then we get

K/F Galois⇐⇒ K/F normal.

Recall from item 14b that this is equivalent to a rather intriguing property,
namely that every irreducible f(x) ∈ F [x] that has at least one root in K
has all of its roots in K. The explanation for this property is the following:
If f(x) ∈ F [x] has a root α ∈ K, and if σ is an automorphism of K over
F , then σ(α) is again a root of f(x) in K. Now a Galois extension is
by definition an extension that has as many as possible (namely [K : F ])
automorphisms. Applying all these automorphisms to that one root α, we
find all the roots of the minpoly of α over F . If f(x) is irreducible, then
that means that we get all roots of f(x).

26. We have to prove item 23. First, we have to prove formula (4) and then
we have to show that we get an equality in formula (4) if and only if K is
the splitting field of some separable polynomial over F .
Let N := [K : F ] and let G = Aut(K/F ). By using induction, we may
assume that everything in item 23 is true for any field extension of degree
smaller than N . Now suppose that K 6= F and take some element α ∈ K,
α 6∈ F . Let d = [F (α) : F ] > 1 and so [K : F (α)] = N/d. Since N/d < N
we may by induction assume that everything in item 23 is true for the
field extension F (α) ⊆ K.
Now G acts on K. Let Gα be the stabilizer of α, and let Oα be the orbit
of α under G. Remember from group theory that the stabilizer Gα is the
group {g ∈ G|g(α) = α}, that Oα is the set {g(α)|g ∈ G}. Group theory
tells us that

|G| = |Gα| · |Oα|



Now Gα = Aut(K/F (α)) so by induction we get that |Gα| ≤ [K : F (α)],
with equality if and only if K is the splitting field over F (α) of some
separable polynomial in F (α)[x].
Let m(x) be the minpoly of α over F . If g ∈ G then g acts trivially on
F and so g(m(x)) = m(x). Then 0 = g(0) = g(m(α)) = m(g(α)) so we
see that every element of Oα is a root of m(x). Hence, |Oα| ≤ deg(m(x)).
Then we find

|G| = |Gα| · |Oα| ≤ [K : F (α)] · deg(m(x)) = [K : F (α)] · [F (α) : F ] = N

so we have now proved formula (4).

We now have to show that if we get an equality, then K has to be a
splitting field. But the only way we can get |G| = N in the last formula
is when |Oα| = deg(m(x)). But every element of Oα is a root of m(x), so
inside Oα (which is a subset of K) we can already find deg(m(x)) roots.
Therefore m(x) splits in K. Moreover, m(x) also has to be separable
(otherwise we it is impossible to find deg(m(x)) roots in any field, let alone
K). If K is the splitting field of m(x) then we are done; otherwise write
K = F (α1, . . . , αr) for some αi ∈ K (note: K/F is finite implies K/F is
finitely generated). Let mαi(x) be the minpoly of αi over F . Just like we
saw that m(x) is separable and splits over K, the same argument shows
that mαi

(x) splits over K as well (and is again separable). Then take
f(x) as the least common multiple of the polynomials mα1

(x), . . . ,mαr
(x).

Again, this polynomial is separable and splits over K because each of the
mαi is separable and splits over K. But this time, the splitting field of
f(x) is K.

We have shown that G = Aut(K/F ) has at most [K : F ] elements, and
that if it has exactly [K : F ] elements then K has to be the splitting
field of some separable polynomial f(x) ∈ F [x]. Remains to show that if
K is the splitting field of some separable polynomial f(x), that then G
has precisely [K : F ] elements. Again, lets do this by induction. If f(x)
splits over F then we’re done, otherwise, let m(x) be an irreducible factor
of f(x) in F [x] of degree d > 1. Let α1, . . . , αd be the roots of m(x) in
K. Then each of the fields F (αi) is isomorphic to F [x]/(m(x)) and hence
each of these fields is isomorphic to F (α1). So we have an isomorphism
σ′i : F (α1) → F (αi) and, following the proof of Theorem 27 in section
13.4, we see that this σ′i can be extended to an isomorphism σi : K → K,
so σi ∈ Aut(K/F ) (what is denoted as F, F ′, E,E′, σ′, σ, α, β in the proof
of Theorem 27 is in our setting denoted as F, F,K,K, σ′i, σi, α1, αi).
Since {σ1, . . . , σd} is a subset (not necessarily a subgroup) of G, it follows
that {σ1(α1), . . . , σd(α1)} = {α1, . . . , αd} is a subset of Oα1 , the orbit of
α1 under G. Hence, Oα1

has at least d elements. Then it has precisely
d elements because every element of Oα1

has to be a root of m(x), the
minpoly of α1. NowGα1

, the stabilizer of α1, is the same as Aut(K/F (α1))
and by induction this group has precisely [K : F (α1)] elements (to use
induction, note that K is the splitting field of f(x) over F (α1) and note



that this extension K/F (α1) is an extension of lower degree than the
extension K/F ). Then |G| = |Gα1 | · |Oα1 | = [K : F (α1)] · d = [K : F ].

27. Let H be a subgroup of Aut(K). We define the fixed field of H as

KH := {a ∈ K |σ(a) = a for all σ ∈ H}.

Note that “the smaller the group H is, the bigger the field KH will be”,
specifically, if you take the smallest group H = {1} then the fixed field of
H is just K itself.

28. Let K be any field, and let H be any finite subgroup of Aut(K). Since H
acts trivially on KH , it is clear that H ≤ Aut(K/KH), but in fact we can
say much more, namely:

H = Aut(K/KH) (5)

and
|H| = [K : KH ] (6)

Note: combining the above two equations with the definition in item 24
shows that K/KH is Galois.

Proof: Let n = |H| and N = [K : KH ]. Now

n = |H| ≤ |Aut(K/KH)| ≤ N (7)

where the first ≤ is because H ≤ Aut(K/KH) and the second ≤ comes
from formula (4). Remains to show: N ≤ n. Once we’ve shown this, then
both ≤ in (7) become an equality, and then both equations (5),(6) follow.

Assume that N > n (remains to prove: a contradiction). Denote F := KH

and with [K : F ] = N > n we can then find at least n + 1 F -linearly
independent elements α1, . . . , αn+1 in K. Let H = {σ1, . . . , σn}, where
σ1 is the identity, and make an n by n + 1 matrix A in which the i’th
row is equal to σi(α1), . . . , σi(αn+1). Notice that if σ ∈ H then σ(A) is
just A with some rows interchanged. Therefore, A and σ(A) will have the
same reduced row echelon form, lets call this matrix rref(A) = R. Then
σ(R) = rref(σ(A)) = R and so R is invariant under H, and hence R is an
n by n+ 1 matrix with entries in F = KH . Now let (c1, . . . , cn+1) ∈ Fn+1

be a non-zero vector in the Nullspace of R. Then this is also in the
Nullspace of A (a matrix A has the same Nullspace as its reduced row
echelon form). Now multiply the first row of A by this vector (c1, . . . , cn+1)
and we get a linear relation c1α1 + · · ·+ cn+1αn+1 = 0 which contradicts
that α1, . . . , αn+1 are linearly independent over F .

29. The book gives a different proof of formula (4), I will sketch it here. First,
there is a useful fact that is true in general: “automorphisms of K are
linearly independent over K” (Cor. 8 in section 14.2). Now let σ1, . . . , σn
be elements of Aut(K/F ). Then they are also F -linear maps from K to



K, so they are elements of V := HomF (K,K). Now V is an F -vector
space of dimension N2 where N := [K : F ]. If you have an F -linear map
φ : K → K and if a ∈ K then aφ is also an F -linear map from K to K.
In other words, aφ ∈ V for every a ∈ K and φ ∈ V , or, as mathematicians
would say: V is a K-vector space. Its dimension as K-vector space must
then be the dimension as F -vector space divided by [K : F ], so as a K-
vector space, V will have dimension N2/N = N . Now σ1, . . . , σn ∈ V are
linearly independent (over K) and hence n ≤ N .

30. Subgroups give you subfields, and subfields give you subgroups, as follows:

Let G = Aut(K/F ). Let H be a subgroup of G. Then KH , defined in
item 27, is a subfield of K/F .

Now, lets say that E is some subfield of K/F (i.e. E is a subfield of K
for which F ⊆ E). Then Aut(K/E) is a subgroup of Aut(K/F ) because
any automorphism of K that acts trivially on E is also an automorphism
of K that acts trivially on F .

31. Let S1 be the set of all subgroups of G := Aut(K/F ). Let S2 be the set
of all subfields of K/F . In item 30 we gave a map, lets call it Φ1, from S1

to S2. We also gave a map, lets call it Φ2, from S2 to S1. Do these two
maps give us a 1-1 correspondence here between subgroups and subfields?
Are these maps each others inverses?

(a) If |G| < [K : F ] then the answer is NO. To see that, start with the
two elements F and KG in S2. Now Φ2(F ) = G and Φ2(KG) is also
G. However, if |G| < [K : F ] then F 6= KG by item 28, so then we
see that Φ2 is not one-to-one.

(b) Galois correspondence: If K/F is a Galois extension, i.e. if |G| =
[K : F ] then the answer is YES. We will prove this in the next two
items.

32. First some observations that are true whether K/F is Galois or not:

(a) If E ⊆ E′ are subfields of K/F , and H = Aut(K/E) and H ′ =
Aut(K/E′) are the corresponding subgroups, then H ′ ⊆ H.
Proof: if g ∈ H ′ then g leaves acts trivially on E′, so it acts trivially
on E ⊆ E′, and so g ∈ H.

(b) If H ⊆ H ′ are subgroups of G, and E = KH and E′ = KH′
are the

corresponding subfields, then E′ ⊆ E.
Proof: If a ∈ E′ then a is invariant under H ′ so then it is definitely
invariant under H ⊆ H ′ and so it is in E.

(c) If E is a subfield of K/F , if H = Aut(K/E), and if E′ = KH then

E ⊆ E′ and Aut(K/E) = Aut(K/E′).

Proof: If a ∈ E then it is invariant under H, and hence also an ele-
ment of KH , and so a ∈ E′. So E ⊆ E′ and then H ′ := Aut(K/E′) ⊆



H by item 32a. Now take g ∈ H, so then g acts trivially on E′ = KH ,
and hence g ∈ H ′, so H ⊆ H ′, and so H = H ′.

(d) If E is a subfield of K/F and if K/F is Galois, then K/E is Galois
as well.
Proof: K/F Galois is equivalent (see item 23, I gave a complete
proof of this in item 26) to saying that K is the splitting field of
some separable polynomial f(x) ∈ F [x]. But then f(x) is also an
element of E[x] so K is also the splitting field of f(x) over E. Then,
using item 23 again, we see that K/E is also Galois.

33. Proof of Galois Correspondence. Assume that K/F is Galois, then we get

(a) The map Φ1Φ2 is the identity on S2.
Proof: Let E ∈ S2, so E is a subfield of K/F . Then K/E is Galois by
item 32d, so the group H := Aut(K/E) has [K : E] elements. Now
let E′ = KH and let H ′ = Aut(K/E′). Now K/E′ is also Galois by
item 32d, so the group H ′ has [K : E′] elements. But H = H ′ by
item 32c and so [K : E′] = [K : E]. But since E ⊆ E′, see item 32c,
we get [K : E] = [K : E′] · [E′ : E] and hence [E′ : E] = 1 so E′ = E.
But E was an arbitrary element of S2, and H = Φ2(E), while E′ =
Φ1(H) = Φ1Φ2(E). So the fact that E′ = E means that Φ1Φ2 sends
E to E.

(b) The map Φ2Φ1 is the identity on S1.
Proof: Let H ∈ S1. Then formula (5) in item 28 says that H =
Aut(K/KH) = Φ2(KH) = Φ2Φ1(H).


