
Sample questions with answers.

1. Let M be a finitely generated module over a PID R. Let m ∈ M . The
annihilator of m is the set of all r ∈ R with rm = 0. The annihilator of
M is the of all r ∈ R for which rm = 0 for all m ∈ M . Show that there
exists m ∈M whose annihilator is equal to the annihilator of M .

ANSWER: If M contains a non-torsion element m then m has the same
annihilator as M (namely {0}). If M is torsion then M is isomorphic to
a module of the form R/(a1)⊕ · · · ⊕R/(ak) with a1|a2| · · · |ak. Now take
m ∈ R/(a1)⊕ · · · ⊕R/(ak) for which the last entry, the one in R/(ak), is
1. Then ak divides any r ∈ R for which rm = 0. But ak also annihilates
all of M since a1| · · · |ak. So Ann(m) = (ak) = Ann(M).

2. Let M be Q[x]-module, and a Q-vector space of dimension n. Let (f) be
the annihilator of M . Show that the degree of f is n if and only if M is a
cyclic Q[x]-module.

ANSWER: M must be a torsion Q[x]-module since its Q-dimension is
finite. Then M is isomorphic to a module of the form R/(a1)⊕· · ·⊕R/(ak)
with a1|a2| · · · |ak. Then the annihilator (f) equals (ak). IfM is cyclic then
k = 1 and M is isomorphic to R/(ak) = R/(f) which has Q-dimension
degree(f). If M is not cyclic, then the dimension of M is the sum of the
degrees of the ai, this sum is larger than the degree of ak = f .

3. Let F2 be the field with 2 elements and let R = F2[x]. Up to isomorphism,
how many R-modules exist with precisely 8 elements?

ANSWER: We look for a1|a2| · · · ak with ai ∈ R. The sum of the degrees
must be 3, that way the dimension of the module as F2-vector space is 3,
so that there are 23 = 8 elements. Case 1: k = 1 and a1 has degree 3.
This gives 23 possible values for a1. Case 2: k = 2. Then a1 must have
degree 1 (2 cases) and a2 must have degree two, and be divisible by a1, so
it must be g · a1 for some linear polynomial g (2 cases) (total for Case 2
is 2 · 2 cases). Case 3: k = 3. Then a1 = a2 = a3 is linear (2 cases). Total
for Cases 1,2,3 is 23 + 2 · 2 + 2 = 14.

4. For a, b ∈ Z let v = (a, b) in the abelian group Z × Z. Show that the
quotient group Z× Z/ < v > is cyclic if and only if gcd(a, b) = 1.

ANSWER: The Z-module Z × Z has rank 2 and the Z-module < v >
has rank d with d = 0 if v = 0 and d = 1 if v 6= 0. Then the quotient
group has rank r = 2 − d as Z-module. By the classification theorem of
Z-modules, this quotient group is isomorphic to Zr⊕Z/(a1)⊕· · ·⊕R/(ak)
with a1|a2| · · · |ak. Now r > 0 so the only way this group is cyclic is when
r = 1 (i.e. d = 1, so v 6= 0) and k = 0 (i.e. no torsion). It remains to show,
for v 6= 0, that Z × Z/ < v > is torsion-free if and only if gcd(a, b) = 1.
If the gcd is d 6= 1, then let w be v divided by d. Then w 6∈< v > and
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dv ∈< v > so w is torsion in Z×Z/ < v >. If the gcd is 1, and if w 6∈< v >
then any non-zero integer multiple of w will not be in < v > either, so
Z× Z/ < v > is torsion-free.

5. Let R be a PID, and let φ : Rn → Rn be a homomorphism of R-modules.
Show that for some d there is a surjective homomorphism φ2 : Rn → Rd

with the same kernel as φ.

ANSWER: Let M be the image of φ. Then M is a finitely generated
R-module. M is torsion-free because it is contained in the torsion-free
module Rn. Thus, by the classification theorem, M is isomorphic to Rd

for some d. Composing this isomorphism with φ we obtain an onto homo-
morphism from Rn to Rd with the same kernel as φ.

6. Let R be a PID and let M be a finitely generated R-module. Show that
the following are equivalent:

(a) M is not cyclic.

(b) There exists a surjective R-module homomorphism

φ : M → R/I ×R/I

for some ideal I ( R.

ANSWER: By the classification theorem, M can (up to isomorphism) be
written as Rr⊕R/(a1)⊕· · ·⊕R/(ak) for some a1|a2| · · · |ak with a1 not a
unit (otherwise you could simply delete the term R/(a1) since it would be
trivial). Cyclic means: r ≤ 1, k = 0 or r = 0, k ≤ 1. So not cyclic means (3
cases): (i) r ≥ 2, or (ii) r = 1, k = 1, or (iii) k ≥ 2. In case (i), take I = 0,
and take the projection to the first two coordinates in Rr. In case (ii),
M is R × R/(a1) and we have a surjective homomorphism to R/I × R/I
where I = (a1). In case 3, there is a natural surjective homomorphism to
R/(a1)×R/(a2), from which there is a natural surjective homomorphism
to R/(a1)×R/(a1).
Conversely, if M is cyclic, say generated by m, and if φ were surjective,
then φ(m) would generate R/I × R/I (which is not cyclic, leading to a
contradiction).

7. Let f(x) and g(x) be two polynomials in R[x] of degree 3. Suppose that
f ′(x) > 0 and g′(x) > 0 for every x ∈ R. Prove that R[x]/(f(x)) and
R[x]/(g(x)) are isomorphic as rings.

ANSWER: The fact that the degree is odd implies that f(x) has at least
one real root, and the fact that the derivative is always positive implies
that there is a most one real root. So over the real numbers, f factors
as f1f2 with fi irreducible of degree i. Then by the Chinese Remainder
Theorem, R[x]/(f(x)) is isomorphic to R[x]/(f1)×R[x]/(f2) which is iso-
morphic to R× C. The same is also true for R[x]/(g(x)).
Note: we used the fact that if f2 ∈ R[x] has no real roots, then R[x]/(f2)
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is isomorphic to C. To see this, let α ∈ C be one of the two roots of f2.
Sending x to α gives a homomorphism from R[x] to C whose kernel is pre-
cisely (f2). Thus we get an injective (then also surjective since both are
R-vector spaces of the same dimension 2) homomorphism from R[x]/(f2)
to C.

8. Let V be an R-vector space of dimension n. Let φ : V → V be a linear
map for which φ3(v) = φ2(v) for all v ∈ V . Prove that there exists a basis
b1, . . . , bn of V for which φ(bi) ∈ {0, bi, bi−1} for every i = 1, . . . , n.

ANSWER: φ3 − φ2 = 0 so the polynomial t3 − t2 annihilates φ, and is
thus a multiple of the minimal polynomial of φ. The roots of the minimal
polynomial are the same as the roots of the characteristic polynomial.
Those roots are the eigenvalues of φ. So all eigenvalues of φ are roots of
t3−t2, hence all eigenvalues are 0 or 1. Then we can take a basis for which
the matrix is in Jordan normal form. This basis has the required property
(to see this, write down Jordan blocks whose minimal polynomials are: t,
t2 and t− 1) (the factors of t3− t2 that are powers of linear polynomials).

9. Let F be a field and M be an n by n matrix over F . Show that the
following three are equivalent:

(a) There is a non-trivial subspace 0 6= W ( Fn with Mw ∈ W for all
w ∈W .

(b) M is similar to a matrix of the form(
A B
0 C

)
for some matrices A,B,C with entries in F (of sizesm1×m1, m1×m2,
m2 ×m2 for some m1,m2 > 0).

(c) The characteristic polynomial f ∈ F [x] of M is reducible in F [x].

ANSWER:
(a) =⇒ (b). Take a basis b1, . . . , bk of W and extend it (for a vector space,
any independent set can be extended to a basis) to a basis b1, . . . , bn of
Fn. The matrix of M with respect to this basis will have the correct form.
(b) =⇒ (c). Similar matrices have the same characteristic polynomial, and
the characteristic polynomial of the matrix in part (b) is the product of
the characteristic polynomials of matrices A and C.
(c) =⇒ (a). We can turn Fn into an F [x]-module as follows: If g = g(x) ∈
F [x] and v ∈ Fn then g · v := g(M)v. Now take any non-zero v in Fn and
let g ∈ F [x] be its annihilator (the monic polynomial of minimal degree
with g · v = 0). Then g|f because f annihilates any element of Fn due
to the fact that f(M) = 0. Let d be the degree of g. Then the span of
v,Mv,M2v,M3v, . . . has the following basis: {v,Mv, . . . ,Md−1v} (these
must be linearly independent due to the minimality of the degree of g). If
d < n then we can take W as this span. If d = n, then the annihilator g
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of v equals f . But f is reducible, say f = f1f2. Now take v′ := f2(v). Its
annihilator is f1, and so we can take W as the span of v′,Mv′,M2v′, . . .,
which has dimension equal to the degree of f1.

10. Let M be an Fp[x]-module of dimension 3 (dimension as Fp-vector space).
Suppose that M is not a cyclic module.

(a) Let r = xp − x and let m ∈M . Show that r2m = 0.

(b) Must rm also be 0?

ANSWER: M is isomorphic to R/(a1) ⊕ · · · ⊕ R/(ak) with a1|a2| · · · |ak.
M is not cyclic, so k > 1. The dimension is 3, so k ≤ 3. If k = 3 then
a1 = a2 = a3 = x− c for some c ∈ Fp. Every c ∈ Fp is a root of xp − x so
a3 (the annihilator of M) divides r := xp−x. Then rm = 0 for all m ∈M .
The remaining case is k = 2. Then a1 = x − c for some c ∈ Fp and a2
must have degree 2, and must be divisible by a1, so a2 = (x − c)(x − d)
for some c, d ∈ Fp. If c 6= d then a2 divides xp − x and in that case,
rm = 0 for all m ∈M . But if d = c then a2 = (x− c)2 and this does not
divide r = xp − x = x(x− 1)(x− 2) · · · (x− (p− 1)). That means that if
m corresponds to (0, 1) ∈ R/(a1) ⊕ R/(a2) then r does not annihilate m
since r is not an element of the annihilator (a2) of m.
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