1. Compute the minimal polynomial of $i+\sqrt{2}$ over \mathbb{Q}.
2. Suppose $[\mathbb{Q}(\alpha): \mathbb{Q}]=35$. Show that $\mathbb{Q}\left(\alpha^{3}\right)=\mathbb{Q}(\alpha)$.
3. Let $K=\mathbb{Q}\left(\zeta_{16}\right)$ and let $G=\left\{\sigma_{1}, \sigma_{3}, \sigma_{5}, \ldots, \sigma_{15}\right\}$ be the Galois group of K over \mathbb{Q}, where σ_{i} maps ζ_{16} to ζ_{16}^{i}. For each of the following subgroups H of G, write down:
(i) the fixed field K^{H}, (ii) its degree $\left[K^{H}: \mathbb{Q}\right]$.
(a) G
(b) $<\sigma_{1}>$.
(c) $<\sigma_{3}>$.
(d) $\left\langle\sigma_{5}\right\rangle$.
(e) $\left\langle\sigma_{7}\right\rangle$.
(f) $<\sigma_{9}>$.
(g) $<\sigma_{15}>$.
(h) Which of the field(s) in questions (a)-(g) contains i ?
(i) Which of the field(s) in questions (a)-(g) is contained in \mathbb{R} ?
4. Let $K=\mathbb{Q}(i, \sqrt[4]{3})$.
(a) What is the Galois group G of K over \mathbb{Q} ?
(b) Give a subgroup H of G whose fixed field is:
i. $\mathbb{Q}(i)$.
ii. $\mathbb{Q}(\sqrt[4]{3})$.
iii. $\mathbb{Q}(i \sqrt[4]{3})$.
5. Let $K:=\mathbb{Q}\left(\zeta_{16}\right)$ and let G be its Galois group. For each of the following subfields E, write down an explicit group $H \leq G$ such that E is the fixed field of H. You do not need to explain your answers for (a)-(f).
(a) $E_{1}:=K$
(b) $E_{2}:=\mathbb{Q}$
(c) $E_{3}:=K \bigcap \mathbb{R}$
(d) $E_{4}:=\mathbb{Q}\left(\zeta_{16}+\zeta_{16}^{7}\right)$
(e) $E_{5}:=\mathbb{Q}\left(\zeta_{8}\right)$
(f) $E_{6}:=\mathbb{Q}\left(\zeta_{4}\right)$
(g) $E_{7}:=$ The intersection of E_{3} and E_{5}.
(h) What is $\left[E_{7}: \mathbb{Q}\right]$?
(i) Is $E_{7} \subseteq E_{4}$?
6. Let $K=\mathbb{Q}(i, \sqrt[4]{3})$ and let $G=<\tau, \sigma>$ where τ is complex conjugation, $\tau: i \mapsto-i$, and σ sends i to i and $\sqrt[4]{3}$ to $i \sqrt[4]{3}$. Let $h=\tau \sigma^{2}$ and $H=<h>$. What is K^{H} ?
7. Suppose that K / \mathbb{Q} is Galois and that its Galois group G is a simple group. Suppose that E is a proper subfield, i.e. $\mathbb{Q} \subsetneq E \subsetneq K$. Show that E / \mathbb{Q} is not Galois.
8. Suppose that K / \mathbb{Q} is Galois with group G. Suppose that $\alpha \in K$ and that $\sigma \in Z(G)$, the center of G. Show that $\sigma(\alpha) \in \mathbb{Q}(\alpha)$.

Hint: Apply Galois correspondence to $E:=\mathbb{Q}(\alpha)$ and......
9. Let E be a subfield of $\mathbb{Q}\left(\zeta_{17}\right)$, not equal to $\mathbb{Q}\left(\zeta_{17}\right)$. Show that $E \subset \mathbb{R}$.
10. Let $K:=\mathbb{Q}\left(\zeta_{16}\right) \bigcap \mathbb{R}$. Show that K is Galois over \mathbb{Q}, and give its Galois group.
11. Let $K=\mathbb{Q}\left(\zeta_{13}\right)$.
(a) Is K Galois over \mathbb{Q} ?
(b) How many subfields does K have. (Include K and \mathbb{Q} in your count).
(c) How many of subfields of K are inside \mathbb{R} ?
(d) Does there exist an element $a \in K$ with $a \notin \mathbb{R}$ and $\mathbb{Q}(a) \neq K$? If so, then write down an example of such a.
12. Let $\zeta=e^{2 \pi i / 31}$ be a primitive 31 'th root of unity, and let

$$
\alpha=\zeta+\zeta^{2}+\zeta^{4}+\zeta^{8}+\zeta^{16}
$$

Let $K=\mathbb{Q}(\zeta)$ and $E=\mathbb{Q}(\alpha)$. Let G be the Galois group of K over \mathbb{Q}.
(a) Write down the group G and the order of G.
(b) Explain why E must be Galois over \mathbb{Q}.
(c) Prove that $[E: \mathbb{Q}] \leq 6$ (hint: Write down a subgroup $H \leq G$ such that α is in the fixed field of H).
(d) Prove that $[E: \mathbb{Q}]=6$.
(e) Let $\beta=\zeta^{3}+\zeta^{6}+\zeta^{12}+\zeta^{24}+\zeta^{48}$ (note: $\zeta^{48}=\zeta^{17}$). Prove that $\beta \in E$.

