- 1. Compute the minimal polynomial of $i + \sqrt{2}$ over \mathbb{Q} .
- 2. Suppose $[\mathbb{Q}(\alpha) : \mathbb{Q}] = 35$. Show that $\mathbb{Q}(\alpha^3) = \mathbb{Q}(\alpha)$.
- 3. Let $K = \mathbb{Q}(\zeta_{16})$ and let $G = \{\sigma_1, \sigma_3, \sigma_5, \dots, \sigma_{15}\}$ be the Galois group of K over \mathbb{Q} , where σ_i maps ζ_{16} to ζ_{16}^i . For each of the following subgroups H of G, write down:
 - (i) the fixed field K^H , (ii) its degree $[K^H : \mathbb{Q}]$.
 - (a) G
 - (b) $< \sigma_1 >$.
 - (c) $< \sigma_3 >$.
 - (d) $< \sigma_5 >$.
 - (e) $< \sigma_7 >$.
 - (f) $< \sigma_9 >$.
 - (g) $< \sigma_{15} >$.
 - (h) Which of the field(s) in questions (a)–(g) contains i?
 - (i) Which of the field(s) in questions (a)–(g) is contained in \mathbb{R} ?
- 4. Let $K = \mathbb{Q}(i, \sqrt[4]{3}).$
 - (a) What is the Galois group G of K over \mathbb{Q} ?
 - (b) Give a subgroup H of G whose fixed field is:
 - i. $\mathbb{Q}(i)$.
 - ii. $\mathbb{Q}(\sqrt[4]{3})$.
 - iii. $\mathbb{Q}(i\sqrt[4]{3}).$
- 5. Let $K := \mathbb{Q}(\zeta_{16})$ and let G be its Galois group. For each of the following subfields E, write down an explicit group $H \leq G$ such that E is the fixed field of H. You do not need to explain your answers for (a)–(f).
 - (a) $E_1 := K$
 - (b) $E_2 := \mathbb{Q}$
 - (c) $E_3 := K \cap \mathbb{R}$
 - (d) $E_4 := \mathbb{Q}(\zeta_{16} + \zeta_{16}^7)$
 - (e) $E_5 := \mathbb{Q}(\zeta_8)$
 - (f) $E_6 := \mathbb{Q}(\zeta_4)$
 - (g) $E_7 :=$ The intersection of E_3 and E_5 .
 - (h) What is $[E_7 : \mathbb{Q}]$?
 - (i) Is $E_7 \subseteq E_4$?

- 6. Let $K = \mathbb{Q}(i, \sqrt[4]{3})$ and let $G = \langle \tau, \sigma \rangle$ where τ is complex conjugation, $\tau: i \mapsto -i$, and σ sends i to i and $\sqrt[4]{3}$ to $i\sqrt[4]{3}$. Let $h = \tau\sigma^2$ and $H = \langle h \rangle$. What is K^H ?
- 7. Suppose that K/\mathbb{Q} is Galois and that its Galois group G is a simple group. Suppose that E is a proper subfield, i.e. $\mathbb{Q} \subsetneq E \subsetneq K$. Show that E/\mathbb{Q} is not Galois.
- 8. Suppose that K/\mathbb{Q} is Galois with group G. Suppose that $\alpha \in K$ and that $\sigma \in Z(G)$, the center of G. Show that $\sigma(\alpha) \in \mathbb{Q}(\alpha)$.

Hint: Apply Galois correspondence to $E := \mathbb{Q}(\alpha)$ and.....

- 9. Let E be a subfield of $\mathbb{Q}(\zeta_{17})$, not equal to $\mathbb{Q}(\zeta_{17})$. Show that $E \subset \mathbb{R}$.
- 10. Let $K := \mathbb{Q}(\zeta_{16}) \cap \mathbb{R}$. Show that K is Galois over \mathbb{Q} , and give its Galois group.
- 11. Let $K = \mathbb{Q}(\zeta_{13})$.
 - (a) Is K Galois over \mathbb{Q} ?
 - (b) How many subfields does K have. (Include K and \mathbb{Q} in your count).
 - (c) How many of subfields of K are inside \mathbb{R} ?
 - (d) Does there exist an element $a \in K$ with $a \notin \mathbb{R}$ and $\mathbb{Q}(a) \neq K$? If so, then write down an example of such a.

12. Let $\zeta = e^{2\pi i/31}$ be a primitive 31'th root of unity, and let

$$\alpha = \zeta + \zeta^2 + \zeta^4 + \zeta^8 + \zeta^{16}.$$

Let $K = \mathbb{Q}(\zeta)$ and $E = \mathbb{Q}(\alpha)$. Let G be the Galois group of K over \mathbb{Q} .

- (a) Write down the group G and the order of G.
- (b) Explain why E must be Galois over \mathbb{Q} .
- (c) Prove that $[E : \mathbb{Q}] \leq 6$ (hint: Write down a subgroup $H \leq G$ such that α is in the fixed field of H).
- (d) Prove that $[E:\mathbb{Q}] = 6$.
- (e) Let $\beta = \zeta^3 + \zeta^6 + \zeta^{12} + \zeta^{24} + \zeta^{48}$ (note: $\zeta^{48} = \zeta^{17}$). Prove that $\beta \in E$.