Answers for sample questions:

1. Compute the minimal polynomial of $i+\sqrt{2}$ over \mathbb{Q}.

Answer 1: Let $\alpha=i+\sqrt{2}$ then $\alpha^{0}, \ldots, \alpha^{4}$ are: $1, i+\sqrt{2}, 1+2 i \sqrt{2}, 5 i-$ $\sqrt{2},-7+4 i \sqrt{2}$ and we find $\alpha^{4}-2 \alpha^{2}+9=0$, we find no linear relation between $\alpha^{0}, \ldots, \alpha^{3}$ and so $f:=x^{4}-2 x^{2}+9$ is the minpoly.
Answer 2: you could also compute the product of $x-\sigma(\alpha)$ for all σ in the Galois group. The set of all these $\sigma(\alpha)$ is $\{ \pm i \pm \sqrt{2}\}$. First multiply $(x+\sqrt{2}+i) \cdot(x-\sqrt{2}+i)$ to obtain $x^{2}+2 i x-3$. Then multiply that by its complex conjugate and you find f.

Fastest method: Observe that $-\alpha$ is among the conjugates of α, so $-\alpha$ has the same minpoly as α. That means that $f(-x)=f(x)$ and so $f(x)=g\left(x^{2}\right)$ for some g. Another way to say that is that there must be a linear relation between $\alpha^{0}, \alpha^{2}, \alpha^{4}$. So we don't need to compute α^{3}. So square α twice, and look for a linear relation between $\alpha^{0}, \alpha^{2}, \alpha^{4}$.
2. Suppose $[\mathbb{Q}(\alpha): \mathbb{Q}]=35$. Show that $\mathbb{Q}\left(\alpha^{3}\right)=\mathbb{Q}(\alpha)$.

Answer: Let $F=\mathbb{Q}(\alpha)$ and $E=\mathbb{Q}\left(\alpha^{3}\right)$. Since $f:=x^{3}-\alpha^{3}$ is in $E[x]$ and has α as a root, we see that d, the degree of $F=E(\alpha)$ over E, is at most 3 (equality iff f is irreducible). But d also has to divide $[F: \mathbb{Q}]=35$. The only number ≤ 3 that divides 35 is 1 . So $d=1$.
3. Let $K=\mathbb{Q}\left(\zeta_{16}\right)$ and let $G=\left\{\sigma_{1}, \sigma_{3}, \sigma_{5}, \ldots, \sigma_{15}\right\}$ be the Galois group of K over \mathbb{Q}, where σ_{i} maps ζ_{16} to ζ_{16}^{i}. For each of the following subgroups H of G, write down:
(i) the fixed field K^{H}, (ii) its degree $\left[K^{H}: \mathbb{Q}\right]$.
(a) $G:(i): \mathbb{Q}$, (ii): $\operatorname{deg}=1$
(b) $\left\langle\sigma_{1}\right\rangle$: (i): K, (ii) $\operatorname{deg}=8$
(c) $\left\langle\sigma_{3}\right\rangle$: This group has order 4 so $\operatorname{deg}=8 / 4=2$. Since that is prime, any element $\notin \mathbb{Q}$ in that field will generate it. The orbit of ζ_{16} under this group is ζ_{16} raised to the powers $1,3,9,11$. The orbit of $\zeta_{8}=\zeta_{16}^{2}$ under this group is smaller: it is ζ_{8}, ζ_{8}^{3}. So their sum $\zeta_{8}+\zeta_{8}^{3}$ is invariant under our group. That number is equal to $\sqrt{-2}$ (recall that $\left.\zeta_{8}=(1+i) / \sqrt{2}\right)$ so our field is $\mathbb{Q}(\sqrt{-2})$.
(d) $\left\langle\sigma_{5}\right\rangle$: This group has order 4 , so $\operatorname{deg}=8 / 4=2$. The orbit of ζ_{16} under this group is ζ_{16} raised to the powers $1,5,9,13$. The orbit of $i=\zeta_{16}^{4}$ under this group is $\left\{i, i^{5}, i^{9}, i^{13}\right\}=\{i\}$ so i is in the fixed field, which must thus be $\mathbb{Q}(i)$ (when deg is prime, any number not in the base field will generate the field).
(e) $\left\langle\sigma_{7}\right\rangle$: This group has order 2 , so $\operatorname{deg}=8 / 2=4$. The orbit of ζ_{16} is $\left\{\zeta_{16}, \zeta_{16}^{7}\right\}$ and so $\alpha:=\zeta_{16}+\zeta_{16}^{7}$ is in the fixed field. We can compute all conjugates of α by applying each element the quotient group $G /\left\langle\sigma_{7}\right\rangle$ to α, and we find 4 distinct conjugates. That means
that $\mathbb{Q}(\alpha)$ (which \subseteq fixed field) has degree 4 and thus equals the fixed field.
(f) $\left\langle\sigma_{9}\right\rangle$: This group has order 2 , so deg $=8 / 2=4$. The group sends ζ_{16} to $\pm \zeta_{16}$ so we see that $\zeta_{8}=\zeta_{16}^{2}$ is invariant. We already know that ζ_{8} has degree 4 over \mathbb{Q} so the fixed field is $\mathbb{Q}\left(\zeta_{8}\right)=\mathbb{Q}(i, \sqrt{2})$.
Another way we could have concluded this is because $<\sigma^{9}>\subseteq<\sigma_{3}>$ but also $\subseteq<\sigma_{5}>$, so our fixed field must contain the fixed fields from exercises (c) and (d). Combining their generators gives $\mathbb{Q}(\sqrt{-2}, i)=$ $\mathbb{Q}(i, \sqrt{2})$ and since this has degree 4 it must be the field that we are looking for.
(g) $\left\langle\sigma_{15}\right\rangle$: This group has order 2 , so the degree of the fixed field is $8 / 2=4$. The orbit of ζ_{16} is $\left\{\zeta_{16}, \zeta_{16}^{-1}\right\}$ and so $\beta:=\zeta_{16}+\zeta_{16}^{-1}$ is in the fixed field. We can compute all conjugates of this (apply each element the quotient group $\left.G /<\sigma_{15}\right\rangle$ to β) and we find 4 distinct conjugates. That means that $\mathbb{Q}(\beta)(\subseteq$ fixed field $)$ has degree 4 and thus equals the fixed field.
(h) Which of the field(s) in questions (a)-(g) contains i ?

Recall from item (d) that i is fixed by $<\sigma_{5}>=\left\{\sigma_{1}, \sigma_{5}, \sigma_{9}, \sigma_{13}\right\}$ so i is the fixed field of a group H if and only if $H \subseteq\left\{\sigma_{1}, \sigma_{5}, \sigma_{9}, \sigma_{13}\right\}$, which was the case for questions (b),(d),(f).
(i) Which of the field(s) in questions (a)-(g) is contained in \mathbb{R} ?

Conjugation is σ_{15} so for K^{H} to be $\subseteq \mathbb{R}$ it needs to be invariant under σ_{15}, in other words $\sigma_{15} \in H$. That was true for (a) and (g).

Note: not all subgroups were listed in this exercise, there is another subgroup $H:=\left\{\sigma_{1}, \sigma_{7}, \sigma_{9}, \sigma_{15}\right\}$. Since this group contains σ_{15}, its fixed field must be inside \mathbb{R}. But it must also be inside the subfields from exercises (e) and (f) because H contains σ_{7} and σ_{9}. Intersecting \mathbb{R} with the field from (f) we get $\mathbb{Q}(\sqrt{2})$ and thus $\sqrt{2}$ must also be an element of the field from (e). So if you (try this) compute a minpoly for exercise (e), then that minpoly has to factor (deg 2 times deg $2)$ over $\mathbb{Q}(\sqrt{2})$. To get such a degree 2 factor in $\mathbb{Q}(\sqrt{2})[x]$, multiply $x-\alpha$ by $x-\sigma_{15}(\alpha)$ To explain why that works: The orbit of $x-\alpha$ under H is $\left\{x-\alpha, x-\sigma_{15}(\alpha)\right\}$ (although H has order 4 , this orbit has only 2 elements because $x-\alpha$ is invariant under σ_{7}). So the product $(x-\alpha)\left(x-\sigma_{15}(\alpha)\right)$ is invariant under H, which means that its coefficients are in the fixed field, $\mathbb{Q}(\sqrt{2})$, of H.
4. Let $K=\mathbb{Q}(i, \sqrt[4]{3})$.
(a) What is the Galois group G of K over \mathbb{Q} ? $D_{2 \cdot 4}$ where complex conjugation (denote this with τ) acts as a reflection on the set of four complex roots of $x^{4}-3$ while σ (which we define by sending i to i and $\sqrt[4]{3}$ to $i \sqrt[4]{3}$) acts as a rotation on the set of roots.
(b) Give a subgroup H of G whose fixed field is:
i. $\mathbb{Q}(i):\langle\sigma\rangle$ which is a group of order 4 .
ii. $\mathbb{Q}(\sqrt[4]{3}):\langle\tau\rangle$ which is a group of order 2 .
iii. $\mathbb{Q}(i \sqrt[4]{3})$: Comparing this with (b) we see that $i \sqrt[4]{3}$ is another root of the same irreducible polynomial $x^{4}-3$. So the fields in (b),(c) are isomorphic and thus the group for (c) should be a conjugate of the group for (b). But the group $<\tau>$ from (b) only has one conjugate not equal to itself, and to find it, we should conjugate with something that doesn't commute with τ, we can take σ. Result: $<\tau^{\prime}>$ where $\tau^{\prime}=\sigma \tau \sigma^{-1}$. Indeed, applying τ^{\prime} to $i \sqrt[4]{3}$ (apply σ^{-1}, then τ, then σ) sends that number to itself.
5. Let $K:=\mathbb{Q}\left(\zeta_{16}\right)$ and let G be its Galois group. For each of the following subfields E, write down an explicit group $H \leq G$ such that E is the fixed field of H. You do not need to explain your answers for (a)-(f).
(a) $E_{1}:=K . H_{1}=\{1\}$.
(b) $E_{2}:=\mathbb{Q} . H_{2}=G=(\mathbb{Z} /(16))^{*}=\{1,3,5,7,9,11,13,15\}$.
(c) $E_{3}:=K \bigcap \mathbb{R} . H_{3}=\{1,15\}=\{1,-1\}$.
(d) $E_{4}:=\mathbb{Q}\left(\zeta_{16}+\zeta_{16}^{7}\right) \cdot H_{4}=\{1,7\}$, which is a group since $7^{2} \equiv 1 \bmod$ 16.
(e) $E_{5}:=\mathbb{Q}\left(\zeta_{8}\right) . H_{5}=\{1,9\}$, which is a group since $9^{2} \equiv 1 \bmod 16$. The " 9 " in H_{5} sends $\zeta_{8}=\zeta_{16}^{2}$ to $\left(\zeta_{16}^{9}\right)^{2}=\zeta_{8}$.
(f) $E_{6}:=\mathbb{Q}\left(\zeta_{4}\right)$. This is a subfield of E_{5} so the group should become larger than H_{5}. We find $H_{6}=\{1,5,9,13\}$ since they send $\zeta_{4}=\left(\zeta_{16}\right)^{4}$ to ζ_{4}^{i} (with $i \in\{1,5,9,13\}$) all of which are equal to ζ_{4}.
(g) $E_{7}:=$ The intersection of E_{3} and E_{5}. This group should contain H_{3} and H_{5}. We find $H_{7}=<-1,9>=\{1,7,9,15\}$.
(h) What is $\left[E_{7}: \mathbb{Q}\right]$? This equals $[K: \mathbb{Q}] /\left|H_{7}\right|=8 / 4=2$.
(i) Is $E_{7} \subseteq E_{4}$? Yes, because $H_{4} \subseteq H_{7}$.
6. Let $K=\mathbb{Q}(i, \sqrt[4]{3})$ and let $G=<\tau, \sigma>$ where τ is complex conjugation, $\tau: i \mapsto-i$, and σ sends i to i and $\sqrt[4]{3}$ to $i \sqrt[4]{3}$. Let $h=\tau \sigma^{2}$ and $H=<h>$. What is K^{H} ?
h sends i to $-i$ and sends $\sqrt[4]{3}$ to $-\sqrt[4]{3}$ so it keeps $\alpha:=i \sqrt[4]{3}$ invariant. The degree of α over \mathbb{Q} is 4 (minpoly is $x^{4}-3$) so it generates K^{H}. Answer: $\mathbb{Q}(\alpha)$.
7. Suppose that K / \mathbb{Q} is Galois and that its Galois group G is a simple group. Suppose that E is a proper subfield, i.e. $\mathbb{Q} \subsetneq E \subsetneq K$. Show that E / \mathbb{Q} is not Galois.

The group E is the fixed field of some subgroup H of G. Since E is a proper subfield, H is a proper subgroup (not equal to G or to $\{1\}$) but
in a simple group, there are no normal proper subgroups. So H is not a normal subgroup, which is equivalent to saying that its fixed field is not Galois over \mathbb{Q}.
8. Suppose that K / \mathbb{Q} is Galois with group G. Suppose that $\alpha \in K$ and that $\sigma \in Z(G)$, the center of G. Show that $\sigma(\alpha) \in \mathbb{Q}(\alpha)$.
Let $E:=\mathbb{Q}(\alpha)$ and let $H \leq G$ with $E=K^{H}$. Let $h \in H$. Then $h(\sigma(\alpha))=\sigma(h(\alpha))$ because σ, h commute. But $h(\alpha)=\alpha$. Hence h leaves $\sigma(\alpha)$ invariant. This is true for every $h \in H$, hence $\sigma(\alpha)$ is an element of the fixed field of H, which is $\mathbb{Q}(\alpha)$.
9. Let E be a subfield of $\mathbb{Q}\left(\zeta_{17}\right)$, not equal to $\mathbb{Q}\left(\zeta_{17}\right)$. Show that $E \subset \mathbb{R}$.

The Galois group G is cyclic of order 16 , and the cyclic group of order 16 has a very simple subgroup structure: $C_{1} \subset C_{2} \subset C_{4} \subset C_{8} \subset C_{16}$. So if $K=\mathbb{Q}\left(\zeta_{17}\right)$ and $E \neq K$ is a subfield, then $E=K^{H}$ where H is one of these groups: $C_{2} \subset C_{4} \subset C_{8} \subset C_{16}$. In particular, H will contain the unique element of G with order 2. That element is complex conjugation. So $E=K^{H}$ is invariant under complex conjugation, and thus $\subseteq \mathbb{R}$.

Bonus exercise: Show that $E \subseteq \mathbb{Q}(\cos (2 \pi / 17))$.
10. Let $K:=\mathbb{Q}\left(\zeta_{16}\right) \bigcap \mathbb{R}$. Show that K is Galois over \mathbb{Q}, and give its Galois group.
Let $F=\mathbb{Q}\left(\zeta_{16}\right)$. This F is a splitting field over \mathbb{Q} (e.g. for $x^{16}-1$, or for $\left.x^{8}+1\right)$ and so it is a Galois over \mathbb{Q}. The Galois group is the group of units in $\mathbb{Z} /(16)$, which is $G:=(\mathbb{Z} /(16))^{*}=\{1,3,5,7,9,11,13,15\}$ and is isomorphic to $C_{2} \times C_{4}$. The field K is the fixed field of $H:=\{1,15\}$, which is a normal subgroup of G (all subgroups of an abelian group are normal) and thus K must be Galois over \mathbb{Q} with group G / H which is isomorphic to C_{4} (to see this, note that 3 still has order 4 even when you work mod $H)$.

11. Let $K=\mathbb{Q}\left(\zeta_{13}\right)$.

(a) Is K Galois over \mathbb{Q} ?.

Yes, $\mathbb{Q}\left(\zeta_{n}\right)$ is Galois, with Galois group $(\mathbb{Z} /(n))^{*}$. With $n=13$, we find $G:=(\mathbb{Z} /(13))^{*} \cong C_{12}$.
(b) How many subfields does K have.

In general, the subgroups of C_{N} are in 1-1 correspondence with the divisors of N. The divisors of 12 are: $1,2,3,4,6,12$. So there are 6 subgroups, and hence, 6 subfields by the Galois correspondence.
(c) How many of subfields of K are inside \mathbb{R} ?

A subfield $E \subseteq K$ is inside \mathbb{R} if and only if the elements of E are fixed under complex conjugation. Now complex conjugation sends ζ_{13} to $\zeta_{13}^{-1}=\zeta_{13}^{12}$. So complex conjugation corresponds to the element
$[-1]=[12] \in G$.
Complex conjugation is the only element in G of order 2, because a cyclic group of even order has only 1 element of order 2 . So the subgroups of G that contain this element of order 2 are precisely the subgroups of even order: C_{2}, C_{4}, C_{6}, and C_{12}. Therefore, the fixed fields of these four subgroups are the subfields of $K \bigcap \mathbb{R}$. Hence K has 4 subfields inside \mathbb{R}.
(d) Does there exist an element $a \in K$ with $a \notin \mathbb{R}$ and $\mathbb{Q}(a) \neq K$? If so, then write down an example of such a.

In part (c) we showed that if $\mathbb{Q}(a) \subseteq K$, and $\mathbb{Q}(a) \nsubseteq \mathbb{R}$, then $\mathbb{Q}(a)$ must the fixed field of a subgroup of G with odd order, i.e., C_{1} or C_{3}. We can rule out C_{1} because $\mathbb{Q}(a) \neq K$. Hence $\mathbb{Q}(a)$ is the fixed field of C_{3}. Here C_{3} is the set of elements of order 1 and 3 in G, we need to find those elements. Now [1] has order 1, with some computation one finds that [2] has order 12 , so [2] ${ }^{4}$ must then have order $12 / 4=3$. Now $[2]^{4}=[3]$. So $C_{3}=<[3]>=\{[1],[3],[9]\} \subseteq$ $(\mathbb{Z} /(13))^{*}$. Now $a \in K$ must be invariant under this group. We can take $a:=\zeta_{13}^{1}+\zeta_{13}^{3}+\zeta_{13}^{9}$. This a is in the fixed field of C_{3}. In particular $\mathbb{Q}(a) \neq K$. Drawing these three powers of ζ_{13} on the unit circle, one sees that $\operatorname{Im}\left(\zeta_{13}^{3}+\zeta_{13}^{9}\right)$ is slightly more than 0 . The imaginary part of ζ_{13} is also positive. Hence $\operatorname{Im}(a)>0$, so $a \notin \mathbb{R}$.
12. Let $\zeta=e^{2 \pi i / 31}$ be a primitive 31 'th root of unity, and let

$$
\alpha=\zeta+\zeta^{2}+\zeta^{4}+\zeta^{8}+\zeta^{16}
$$

Let $K=\mathbb{Q}(\zeta)$ and $E=\mathbb{Q}(\alpha)$. Let G be the Galois group of K over \mathbb{Q}.
(a) Write down the group G and the order of G.
$G \cong(\mathbb{Z} /(31))^{*}$ is a cyclic group of order 30 .
(b) Explain why E must be Galois over \mathbb{Q}.

By Galois correspondence, the subfields of K correspond to the subgroups of G, and a subfield is Galois over \mathbb{Q} iff the corresponding subgroup is a normal subgroup. But G is abelian, so every subgroup is normal, and hence every subfield of K is Galois over \mathbb{Q}.
(c) Prove that $[E: \mathbb{Q}] \leq 6$ (hint: Write down a subgroup $H \leq G$ such that α is in the fixed field of H).

The group G is isomorphic to $(\mathbb{Z} /(31))^{*}$ which is cyclic of order 30 , and this isomorphism is as follows, if $i \in(\mathbb{Z} /(31))^{*}$ then the corresponding isomorphism $\sigma_{i}: K \rightarrow K$ is the isomorphism that sends ζ to ζ^{i}. Now let $H=<2>=\left\{\sigma_{1}, \sigma_{2}, \sigma_{4}, \sigma_{8}, \sigma_{16}\right\} \subseteq G=(\mathbb{Z} /(31))^{*}$. Then $\alpha=\sum_{h \in H} h(\zeta)$ which is clearly invariant under H, and hence α is in the fixed field K^{H} of H. Now $\left[K: K^{H}\right.$] equals the order of
H, which is 5 , and hence $\left[K^{H}: \mathbb{Q}\right]=30 / 5=6$. Since α, and hence E, sits in K^{H}, we get $[E: \mathbb{Q}] \leq 6$.
(d) Prove that $[E: \mathbb{Q}]=6$.

We have to show that α is algebraic over \mathbb{Q} of degree 6 , which is equivalent to saying that α has 6 distinct conjugates. Applying the σ_{i} to α (take one σ_{i} from each coset $\bmod H$) (so one σ_{i} for each element of G / H) one can find 6 distinct conjugates (one of them, $\sigma_{3}(\alpha)$, can be seen in the next question).
(e) Let $\beta=\zeta^{3}+\zeta^{6}+\zeta^{12}+\zeta^{24}+\zeta^{48}$ (note: $\zeta^{48}=\zeta^{17}$). Prove that $\beta \in E$.

Method 1: This number is $\beta=\sigma_{3}(\alpha)$ so it is a conjugate of α. But $E=\mathbb{Q}(\alpha)$ is Galois over \mathbb{Q}, and this implies that any conjugate of any element of E is again an element of E.
Method 2: β is invariant under σ_{2} (the generator of H) and so β is in K^{H}. But using the previous question we see that K^{H} is the same as E.

