GRV II, sample questions.

1. (10 points). Let R be a commutative ring with identity. Show that there is a field K for which there exists an onto homomorphism from R to K. (3 points bonus: is this provable without the axiom of choice?)
2. Let $R=\mathbb{R}[x] /(f(x))$ where $f(x)$ is a non-constant polynomial in $\mathbb{R}[x]$.
(a) (15 points). Prove that every ideal in R is principal (note: do not write that R is a PID, because if $f(x)$ is reducible then R fails the letter D , domain, in PID).
(b) (5 points). Let $f(x)=x^{3}+x$. For this case, list explicitly all ideals of R (no proof is necessary for this question, but your proof for question (a) can be very helpful here. Note: list all ideals, including the trivial ones).
(c) (10 points). Again $f(x)=x^{3}+x$. Give an isomorphism from R to the product $F_{1} \times F_{2}$ for some fields F_{1}, F_{2}.
(d) (5 points). Again $f(x)=x^{3}+x$. The equation $e^{2}=e$, how many solutions does this equation have in R ?
3. Let $R=\mathbb{Z}[\sqrt{-7}]$.
(a) (5 points). Show that $1+\sqrt{-7}$ and 2 are irreducible in R.

Hint: Introduce the Norm $N(x):=x \cdot \bar{x}$ where \bar{x} is the conjugate of x. Note that $N(x y)=N(x) N(y)$ and if $x=a+b \sqrt{-7}$ then $N(x)=a^{2}+7 b^{2}$. Show that the only units in R are ± 1, there are no elements of Norm 2, and the only elements of Norm 4 are ± 2.
(b) (5 points). Show explicitly that R is not a UFD by factoring 8 in two non-equivalent ways as a product of irreducible elements. Explain why the Norm N is not a Euclidean Norm.
(c) (10 points). Let $I \neq R$ be an ideal, and assume that $a, b \in R, a b \in I$ while $a, b \notin I$ (in other words, I is not prime). Let $J=(I, a)$. Show that $I \subsetneq J \subsetneq R$.
Hint: the only non-trivial thing to show is that $J \neq R$, which you can show by first showing that $J b \subseteq I$ while $R b \nsubseteq I$.
(d) (10 points). Prove that the ideal (2) is not maximal in R, and that the ideal $(2,1+\sqrt{-7})$ is not equal to R.
(e) (10 points). Prove that the ideal $(2,1+\sqrt{-7})$ is not principal (hint: you may use parts (a) $+(\mathrm{d})$ even if you did not prove them).
4. (15 points). Let R be a UFD, and let $f=a_{n} x^{n}+\cdots+a_{0} x^{0} \in R[x]$ with $a_{0}, a_{n} \neq 0$. Let K be the field of fractions, and suppose that $x^{2}+b x+c \in$ $K[x]$ is a factor of f in $K[x]$. Prove that $a_{n} \cdot\left(x^{2}+b x+c\right) \in R[x]$.
5. Let G be a subgroup of S_{10} of order $81=3^{4}$. Let $S=\{1,2, \ldots, 10\}$. The group S_{10} acts on S, and hence, G acts on S as well. Prove that the action of G on S must have a fix point, i.e., prove that there exist an $s \in S$ such that $g a=a$ for all $g \in G$.
6. Let G_{1} and G_{2} be subgroups of S_{10} of order 81 . Prove that G_{1} is isomorphic to G_{2}.
7. D_{50}, the dihedral group of order 50 , how many elements does it have of order:
1:
2:
5:
10:
25 :
50:
8. (a) List every abelian group of order 600 (up to isomorphism) (in other words, if $G_{1} \cong G_{2}$ then do not list both).
(b) List every abelian group of order 64 (up to isomorphism).
(c) List every abelian group of order 64 that has elements of order 8 but no elements of order 16.
(d) List every abelian group of order 64 in which the equation $g^{2}=e$ has precisely 8 solutions.
9. Let $G=\left\{a x+b \mid a \in \mathbb{R}^{*}, b \in \mathbb{R}\right\}$.

So $G=\{$ non-constant linear functions $\mathbb{R} \rightarrow \mathbb{R}\}$, which is a group under composition.
Notice that in the first definition of G, you have a in a multiplicative group \mathbb{R}^{*} and b in an additive group \mathbb{R}. Can you write G as a semi-direct product of those two groups?
(if yes, just write down such a semi-direct product (don't forget to include a map from ... to ...). You don't have to prove that your answer is isomorphic to G)
10. Suppose that $d>1$ and $d \mid \phi(n)$ where ϕ is the Euler ϕ function $(\phi(n)$ is the number of units in the ring $\mathbb{Z} /(n))$.
Show that there exists a nonabelian group of order $n d$.

