GRV II, sample questions + answers.

1. (10 points). Let R be a commutative ring with identity. Show that there is a field K for which there exists an onto homomorphism from R to K. (3 points bonus: is this provable without the axiom of choice?)

Answer: Let M be a maximal ideal, and $K=R / M$. We need the axiom of choice to show that there is a maximal ideal.
2. Let $R=\mathbb{R}[x] /(f(x))$ where $f(x)$ is a non-constant polynomial in $\mathbb{R}[x]$.
(a) (15 points). Prove that every ideal in R is principal (note: do not write that R is a PID, because if $f(x)$ is reducible then R fails the letter D , domain, in PID).

Answer: Ideals in R correspond to ideals in $\mathbb{R}[x]$ (a PID!) that contain $f(x)$.
(b) (5 points). Let $f(x)=x^{3}+x$. For this case, list explicitly all ideals of R (no proof is necessary for this question, but your proof for question (a) can be very helpful here. Note: list all ideals, including the trivial ones).

Answer: We have to list all ideals in $\mathbb{R}[x]$ that contain $f(x)$. Since all ideals are principal, each such ideal can be written as $(g(x))$ for some monic factor $g(x)$ of $f(x)$. Since $f(x)=x\left(x^{2}+1\right)$ has 2 irreducible factors, there are $2^{2}=4$ such $g(x)$. Ideals: $(1),(x),\left(x^{2}+1\right),(f(x))$. (Note that (1) is just R, and $(f(x))$ is the zero ideal in R.)
(c) (10 points). Again $f(x)=x^{3}+x$. Give an isomorphism from R to the product $F_{1} \times F_{2}$ for some fields F_{1}, F_{2}.

Answer: By the Chinese Remainder theorem, $R=\mathbb{R}[x] /\left(x\left(x^{2}+1\right)\right) \cong \mathbb{R}[x] /(x) \times \mathbb{R}[x] /\left(x^{2}+1\right) \cong \mathbb{R} \times \mathbb{C}$.
(d) (5 points). Again $f(x)=x^{3}+x$. The equation $e^{2}=e$, how many solutions does this equation have in R ?

Answer: $R \cong \mathbb{R} \times \mathbb{C}$. The equation has two solutions in each component, so there are $2^{2}=4$ solutions all combined (if you want to make this explicit, the idempotents in $\mathbb{R} \times \mathbb{C}$ are $(0,0),(0,1),(1,0)$, and $(1,1)$).
3. Let $R=\mathbb{Z}[\sqrt{-7}]$.
(a) (5 points). Show that $1+\sqrt{-7}$ and 2 are irreducible in R.

Hint: Introduce the Norm $N(x):=x \cdot \bar{x}$ where \bar{x} is the conjugate of x. Note that $N(x y)=N(x) N(y)$ and if $x=a+b \sqrt{-7}$ then $N(x)=a^{2}+7 b^{2}$. Show that the only units in R are ± 1, there are no elements of Norm 2, and the only elements of Norm 4 are ± 2.

Answer: If $x y=1$ then $N(x) N(y)=N(1)=1$ so then $N(x)$ divides 1 , but then $N(x)=1$ because $N(x) \geq 0$. So every unit has Norm 1 .

If $x=a+b \sqrt{-7}$ and if $b \neq 0$ then the Norm is at least 7. If $b=0$ then the Norm is a^{2}. So there are no elements of Norm 2. If the Norm is 1 then $x= \pm 1$ (a unit). If the Norm is 4 then $x= \pm 2$.
Now let $x=1+\sqrt{-7}$. This is irreducible because if $y \mid x$ then $N(y) \mid N(x)=8$ but if y is not an associate of x then $N(y)$ must be $1,2,4$ (if $N(y)=8$ then $N(x / y)=1$ but then x / y is a unit). There are no elements of Norm 2. And if the Norm is 4 then $y= \pm 2$ but that does not divide x. That means $N(y)=1$ but then y is a unit. So the only factors of x are associates and units. The proof that 2 is irreducible is similar (using the fact that its Norm is 4 but there are no elements of Norm 2).
(b) (5 points). Show explicitly that R is not a UFD by factoring 8 in two non-equivalent ways as a product of irreducible elements. Explain why the Norm N is not a Euclidean Norm.

Answer: Let $x=1+\sqrt{-7}$. Then $8=x \bar{x}$ and these two factors are irreducible, so 8 is a product of 2 irreducible factors. But it is also a product of 3 irreducible factors $8=2 \cdot 2 \cdot 2$. In a UFD, it is not possible to have two irreducible factors in one factorization, and three in another factorization (moreover, the factors x, \bar{x} are not associates of the factors $2,2,2$).
The Norm N can not be Euclidean, because if it were, then R would have been a UFD, which it is not.
(c) (10 points). Let $I \neq R$ be an ideal, and assume that $a, b \in R, a b \in I$ while $a, b \notin I$ (in other words, I is not prime). Let $J=(I, a)$. Show that $I \subsetneq J \subsetneq R$.
Hint: the only non-trivial thing to show is that $J \neq R$, which you can show by first showing that $J b \subseteq I$ while $R b \nsubseteq I$.

Answer: because of the hint it suffices to show that $J b \subseteq I$.
$J b=(I b, a b)$ all of which is in I.
(d) (10 points). Prove that the ideal (2) is not maximal in R, and that the ideal $(2,1+\sqrt{-7})$ is not equal to R.

Answer: This is the same as the previous exercise where $I=(2)$ and $a=1+\sqrt{-7}$ and $b=\bar{a}$.
(e) (10 points). Prove that the ideal $(2,1+\sqrt{-7})$ is not principal (hint: you may use parts $(\mathrm{a})+(\mathrm{d})$ even if you did not prove them).

Answer: If this ideal was principal, say equal to (x), then since $2 \in(x)$ we have $x \mid 2$. But 2 is irreducible, so (x) is either $(1)=R$ or $(x)=(2)$, but both cases are excluded by part (d).
4. (15 points). Let R be a UFD, and let $f=a_{n} x^{n}+\cdots+a_{0} x^{0} \in R[x]$ with $a_{0}, a_{n} \neq 0$. Let K be the field of fractions, and suppose that $x^{2}+b x+c \in$ $K[x]$ is a factor of f in $K[x]$. Prove that $a_{n} \cdot\left(x^{2}+b x+c\right) \in R[x]$.

Answer: Let $g=x^{2}+b x+c$ then we can write $f=g \cdot h$ with $f \in R[x]$ and $g, h \in K[x]$. With Gauss' lemma we showed that there must then be a nonzero constant $s \in K$ such that $s g$ and $s^{-1} h$ are both in $R[x]$, thus obtaining a factorization of f in $R[x]$ as $(s g) \cdot\left(s^{-1} h\right)$. Since $s g=s x^{2}+s b x+s c \in R[x]$, it follows that $s \in R$. Since $s g$ is a factor of f, it follows that the leading coefficient of $s g$ is a factor of the leading coefficient of f. So $s \mid a_{n}$. So if $s g \in R[x]$, then $a_{n} g$ must be in $R[x]$ as well.
5. Let G be a subgroup of S_{10} of order $81=3^{4}$. Let $S=\{1,2, \ldots, 10\}$. The group S_{10} acts on S, and hence, G acts on S as well. Prove that the action of G on S must have a fix point, i.e., prove that there exist an $a \in S$ such that $g a=a$ for all $g \in G$.

Answer: the length of an orbit under G must divide $|G|=3^{4}$. So every orbit must have length $1,3,9,27, \ldots$. All orbits combined must be the set S, which has 10 elements. But 10 is not a sum of $3,9,27, \ldots$ so there must be at least one orbit of length 1 . Now take a in such an orbit.
6. Let G_{1} and G_{2} be subgroups of S_{10} of order 81 . Prove that G_{1} is isomorphic to G_{2}.

Answer: G_{1}, G_{2} are 3 -Sylow subgroups of S_{10}. They must thus be conjugated by Sylow's theorem. But conjugation is an isomorphism.
7. D_{50}, the dihedral group of order 50 , how many elements does it have of order:
1: 1
2: 25
5: 4
10: 0
25: 20
50: 0
To see this, observe that $D_{2 n}=C_{n} \cup\{n$ reflections $\}$. Next, you need to know that if $d \mid n$ then C_{n} has $\phi(d)$ elements of order d.
8. (a) List every abelian group of order 600 (up to isomorphism) (in other words, if $G_{1} \cong G_{2}$ then do not list both).

Answer: $600=2^{3} 3^{1} 5^{2}$.
$3=3=2+1=1+1+1$ (three partitions)
$1=1$ (one partitions)
$2=2=1+1$ (two partitions).
So your answer should list $3 \cdot 1 \cdot 2=6$ groups: $G \times C_{3} \times H$ where $G \in\left\{C_{8}, C_{4} \times C_{2}, C_{2} \times C_{2} \times C_{2}\right\}$ and $H \in\left\{C_{25}, C_{5} \times C_{5}\right\}$.
(b) List every abelian group of order 64 (up to isomorphism).

I'll only list the partitions, for each partition $n=n_{1}+n_{2}+\cdots$ the corresponding group is $C_{2^{n_{1}}} \times C_{2^{n_{2}}} \times \cdots$. Partitions of 6 :
$6,5+1,4+2,4+1+1,3+3,3+2+1,3+1+1+1,2+2+2,2+2+1+1$, $2+1+1+1+1,1+1+1+1+1+1$.
(c) List every abelian group of order 64 that has elements of order 8 but no elements of order 16.

Partitions: $3+3,3+2+1$, and $3+1+1+1$.
(d) List every abelian group of order 64 in which the equation $g^{2}=e$ has precisely 8 solutions.

Partitions: $4+1+1,3+2+1,2+2+2$.
To see this, note that $g^{2}=e$ has 2 solutions in each $C_{2^{n_{i}}}$. So for a partition with k terms $n=n_{1}+\cdots+n_{k}$ we get 2^{k} solutions. For 8 solutions we need $k=3$.
9. Let $G=\left\{a x+b \mid a \in \mathbb{R}^{*}, b \in \mathbb{R}\right\}$.

So $G=\{$ non-constant linear functions $\mathbb{R} \rightarrow \mathbb{R}\}$, which is a group under composition.
Notice that in the first definition of G, you have a in a multiplicative group \mathbb{R}^{*} and b in an additive group \mathbb{R}. Can you write G as a semi-direct product of those two groups?
(if yes, just write down such a semi-direct product (don't forget to include a map from ... to ...). You don't have to prove that your answer is isomorphic to G)

Answer: $\mathbb{R} \rtimes \mathbb{R}^{*}$. For this to be completely defined we need to give a homomorphism from \mathbb{R}^{*} to $\operatorname{Aut}(\mathbb{R})$. This homomorphism sends $a \in \mathbb{R}^{*}$ to $\phi_{a} \in \operatorname{Aut}(\mathbb{R})$ where ϕ_{a} sends b to $a b$.
(if ϕ_{a} does not look like an automorphism to you, then remember that we do not require ϕ_{a} to be a ring-automorphism! It only needs to be an automorphism of the additive group \mathbb{R}.)
10. Suppose that $d>1$ and $d \mid \phi(n)$ where ϕ is the Euler ϕ function $(\phi(n)$ is the number of units in the ring $\mathbb{Z} /(n))$.
Show that there exists a nonabelian group of order $n d$.
Let p be a prime dividing d. Since p divides the order of the group of units in our ring, there must be a unit $u \in \mathbb{Z} /(n)$ whose order is precisely p, i.e. $u \neq 1$ and $u^{p}=1$. Let $\phi_{u}: \mathbb{Z} /(n) \rightarrow \mathbb{Z} /(n)$ denote $\operatorname{map} \phi_{u}(a)=u \cdot a$. Then ϕ_{u} is an automorphism of the additive group $\mathbb{Z} /(n)$. Now let $C_{p}=<g>$ be a cyclic group of order p and take the homomorphism from C_{p} to $\operatorname{Aut}(\mathbb{Z} /(n))$ that sends g to ϕ_{u}. Now we have constructed a non-abelian group $\mathbb{Z} /(n) \rtimes C_{p}$. The order is $n p$. If $p<d$ then take a product of this group and $C_{d / p}$. Then we get a non-abelian group of order $n d$.

