
GRV II, sample questions + answers.

1. (10 points). Let R be a commutative ring with identity. Show that there
is a field K for which there exists an onto homomorphism from R to K.
(3 points bonus: is this provable without the axiom of choice?)

Answer: Let M be a maximal ideal, and K = R/M . We need the axiom
of choice to show that there is a maximal ideal.

2. Let R = R[x]/(f(x)) where f(x) is a non-constant polynomial in R[x].

(a) (15 points). Prove that every ideal in R is principal (note: do not
write that R is a PID, because if f(x) is reducible then R fails the
letter D, domain, in PID).

Answer: Ideals in R correspond to ideals in R[x] (a PID!) that contain
f(x).

(b) (5 points). Let f(x) = x3 + x. For this case, list explicitly all
ideals of R (no proof is necessary for this question, but your proof for
question (a) can be very helpful here. Note: list all ideals, including
the trivial ones).

Answer: We have to list all ideals in R[x] that contain f(x). Since all
ideals are principal, each such ideal can be written as (g(x)) for some
monic factor g(x) of f(x). Since f(x) = x(x2 + 1) has 2 irreducible
factors, there are 22 = 4 such g(x). Ideals: (1), (x), (x2 + 1), (f(x)).
(Note that (1) is just R, and (f(x)) is the zero ideal in R.)

(c) (10 points). Again f(x) = x3 + x. Give an isomorphism from R to
the product F1 × F2 for some fields F1, F2.

Answer: By the Chinese Remainder theorem,
R = R[x]/(x(x2 + 1)) ∼= R[x]/(x)× R[x]/(x2 + 1) ∼= R× C.

(d) (5 points). Again f(x) = x3 + x. The equation e2 = e, how many
solutions does this equation have in R?

Answer: R ∼= R × C. The equation has two solutions in each com-
ponent, so there are 22 = 4 solutions all combined (if you want to
make this explicit, the idempotents in R × C are (0,0), (0,1), (1,0),
and (1,1)).

3. Let R = Z[
√
−7].

(a) (5 points). Show that 1 +
√
−7 and 2 are irreducible in R.

Hint: Introduce the Norm N(x) := x · x where x is the conjugate
of x. Note that N(xy) = N(x)N(y) and if x = a + b

√
−7 then

N(x) = a2 + 7b2. Show that the only units in R are ±1, there are no
elements of Norm 2, and the only elements of Norm 4 are ±2.



Answer: If xy = 1 then N(x)N(y) = N(1) = 1 so then N(x) divides
1, but then N(x) = 1 because N(x) ≥ 0. So every unit has Norm 1.

If x = a + b
√
−7 and if b 6= 0 then the Norm is at least 7. If b = 0

then the Norm is a2. So there are no elements of Norm 2. If the
Norm is 1 then x = ±1 (a unit). If the Norm is 4 then x = ±2.

Now let x = 1 +
√
−7. This is irreducible because if y|x then

N(y)|N(x) = 8 but if y is not an associate of x then N(y) must
be 1, 2, 4 (if N(y) = 8 then N(x/y) = 1 but then x/y is a unit).
There are no elements of Norm 2. And if the Norm is 4 then y = ±2
but that does not divide x. That means N(y) = 1 but then y is a
unit. So the only factors of x are associates and units. The proof
that 2 is irreducible is similar (using the fact that its Norm is 4 but
there are no elements of Norm 2).

(b) (5 points). Show explicitly that R is not a UFD by factoring 8 in two
non-equivalent ways as a product of irreducible elements.
Explain why the Norm N is not a Euclidean Norm.

Answer: Let x = 1 +
√
−7. Then 8 = xx and these two factors are

irreducible, so 8 is a product of 2 irreducible factors. But it is also
a product of 3 irreducible factors 8 = 2 · 2 · 2. In a UFD, it is not
possible to have two irreducible factors in one factorization, and three
in another factorization (moreover, the factors x, x are not associates
of the factors 2, 2, 2).
The Norm N can not be Euclidean, because if it were, then R would
have been a UFD, which it is not.

(c) (10 points). Let I 6= R be an ideal, and assume that a, b ∈ R, ab ∈ I
while a, b 6∈ I (in other words, I is not prime). Let J = (I, a). Show
that I ( J ( R.
Hint: the only non-trivial thing to show is that J 6= R, which you
can show by first showing that Jb ⊆ I while Rb 6⊆ I.

Answer: because of the hint it suffices to show that Jb ⊆ I.
Jb = (Ib, ab) all of which is in I.

(d) (10 points). Prove that the ideal (2) is not maximal in R, and that
the ideal (2, 1 +

√
−7) is not equal to R.

Answer: This is the same as the previous exercise where I = (2) and
a = 1 +

√
−7 and b = a.

(e) (10 points). Prove that the ideal (2, 1 +
√
−7) is not principal (hint:

you may use parts (a)+(d) even if you did not prove them).

Answer: If this ideal was principal, say equal to (x), then since 2 ∈ (x)
we have x|2. But 2 is irreducible, so (x) is either (1) = R or (x) = (2),
but both cases are excluded by part (d).



4. (15 points). Let R be a UFD, and let f = anx
n + · · ·+ a0x

0 ∈ R[x] with
a0, an 6= 0. Let K be the field of fractions, and suppose that x2 + bx+ c ∈
K[x] is a factor of f in K[x]. Prove that an · (x2 + bx+ c) ∈ R[x].

Answer: Let g = x2 + bx+ c then we can write f = g ·h with f ∈ R[x] and
g, h ∈ K[x]. With Gauss’ lemma we showed that there must then be a non-
zero constant s ∈ K such that sg and s−1h are both in R[x], thus obtaining
a factorization of f in R[x] as (sg)·(s−1h). Since sg = sx2+sbx+sc ∈ R[x],
it follows that s ∈ R. Since sg is a factor of f , it follows that the leading
coefficient of sg is a factor of the leading coefficient of f . So s|an. So if
sg ∈ R[x], then ang must be in R[x] as well.

5. Let G be a subgroup of S10 of order 81 = 34. Let S = {1, 2, . . . , 10}. The
group S10 acts on S, and hence, G acts on S as well. Prove that the action
of G on S must have a fix point, i.e., prove that there exist an a ∈ S such
that ga = a for all g ∈ G.

Answer: the length of an orbit under G must divide |G| = 34. So every
orbit must have length 1, 3, 9, 27, . . .. All orbits combined must be the set
S, which has 10 elements. But 10 is not a sum of 3, 9, 27, . . . so there must
be at least one orbit of length 1. Now take a in such an orbit.

6. Let G1 and G2 be subgroups of S10 of order 81. Prove that G1 is isomor-
phic to G2.

Answer: G1, G2 are 3-Sylow subgroups of S10. They must thus be conju-
gated by Sylow’s theorem. But conjugation is an isomorphism.

7. D50, the dihedral group of order 50, how many elements does it have of
order:
1: 1
2: 25
5: 4
10: 0
25: 20
50: 0

To see this, observe that D2n = Cn ∪ {n reflections}. Next, you need to
know that if d|n then Cn has φ(d) elements of order d.

8. (a) List every abelian group of order 600 (up to isomorphism) (in other
words, if G1

∼= G2 then do not list both).

Answer: 600 = 233152.
3 = 3 = 2 + 1 = 1 + 1 + 1 (three partitions)
1 = 1 (one partitions)
2 = 2 = 1 + 1 (two partitions).
So your answer should list 3 · 1 · 2 = 6 groups: G × C3 × H where
G ∈ {C8, C4 × C2, C2 × C2 × C2} and H ∈ {C25, C5 × C5}.



(b) List every abelian group of order 64 (up to isomorphism).

I’ll only list the partitions, for each partition n = n1 + n2 + · · · the
corresponding group is C2n1 × C2n2 × · · · . Partitions of 6:
6, 5+1, 4+2, 4+1+1, 3+3, 3+2+1, 3+1+1+1, 2+2+2, 2+2+1+1,
2+1+1+1+1, 1+1+1+1+1+1.

(c) List every abelian group of order 64 that has elements of order 8 but
no elements of order 16.

Partitions: 3+3, 3+2+1, and 3+1+1+1.

(d) List every abelian group of order 64 in which the equation g2 = e has
precisely 8 solutions.

Partitions: 4+1+1, 3+2+1, 2+2+2.
To see this, note that g2 = e has 2 solutions in each C2ni . So for a
partition with k terms n = n1 + · · · + nk we get 2k solutions. For 8
solutions we need k = 3.

9. Let G = {ax+ b | a ∈ R∗, b ∈ R}.
So G = {non-constant linear functions R → R}, which is a group under
composition.
Notice that in the first definition of G, you have a in a multiplicative
group R∗ and b in an additive group R. Can you write G as a semi-direct
product of those two groups?
(if yes, just write down such a semi-direct product (don’t forget to include
a map from ... to ...). You don’t have to prove that your answer is
isomorphic to G)

Answer: R o R∗. For this to be completely defined we need to give a
homomorphism from R∗ to Aut(R). This homomorphism sends a ∈ R∗ to
φa ∈ Aut(R) where φa sends b to ab.
(if φa does not look like an automorphism to you, then remember that
we do not require φa to be a ring-automorphism! It only needs to be an
automorphism of the additive group R.)

10. Suppose that d > 1 and d|φ(n) where φ is the Euler φ function
(φ(n) is the number of units in the ring Z/(n)).
Show that there exists a nonabelian group of order nd.

Let p be a prime dividing d. Since p divides the order of the group of units
in our ring, there must be a unit u ∈ Z/(n) whose order is precisely p, i.e.
u 6= 1 and up = 1. Let φu : Z/(n)→ Z/(n) denote map φu(a) = u·a. Then
φu is an automorphism of the additive group Z/(n). Now let Cp =< g >
be a cyclic group of order p and take the homomorphism from Cp to
Aut(Z/(n)) that sends g to φu. Now we have constructed a non-abelian
group Z/(n) o Cp. The order is np. If p < d then take a product of this
group and Cd/p. Then we get a non-abelian group of order nd.


