Sample questions.

- 1. Let M be a finitely generated module over a PID R. Let $m \in M$. The annihilator of m is the set of all $r \in R$ with rm = 0. The annihilator of M is the of all $r \in R$ for which rm = 0 for all $m \in M$. Show that there exists $m \in M$ whose annihilator is equal to the annihilator of M.
- 2. Let M be $\mathbb{Q}[x]$ -module, and a \mathbb{Q} -vector space of dimension n. Let (f) be the annihilator of M. Show that the degree of f is n if and only if M is a cyclic $\mathbb{Q}[x]$ -module.
- 3. Let \mathbb{F}_2 be the field with 2 elements and let $R = \mathbb{F}_2[x]$. Up to isomorphism, how many *R*-modules exist with precisely 8 elements?
- 4. For $a, b \in \mathbb{Z}$ let v = (a, b) in the abelian group $\mathbb{Z} \times \mathbb{Z}$. Show that the quotient group $\mathbb{Z} \times \mathbb{Z} / \langle v \rangle$ is cyclic if and only if gcd(a, b) = 1.
- 5. Let R be a PID, and let $\phi : \mathbb{R}^n \to \mathbb{R}^n$ be a homomorphism of R-modules. Show that for some d there is a surjective homomorphism $\phi_2 : \mathbb{R}^n \to \mathbb{R}^d$ with the same kernel as ϕ .
- 6. Let R be a PID and let M be a finitely generated R-module. Show that the following are equivalent:
 - (a) M is not cyclic.
 - (b) There exists a surjective R-module homomorphism

$$\phi: M \to R/I \times R/I$$

for some ideal $I \subsetneq R$.

7. Let f(x) and g(x) be two polynomials in $\mathbb{R}[x]$ of degree 3. Suppose that f'(x) > 0 and g'(x) > 0 for every $x \in \mathbb{R}$. Prove that $\mathbb{R}[x]/(f(x))$ and $\mathbb{R}[x]/(g(x))$ are isomorphic as rings.

- 8. (These last questions use material that will be covered this week). Let V be an \mathbb{R} -vector space of dimension n. Let $\phi : V \to V$ be a linear map for which $\phi^3(v) = \phi^2(v)$ for all $v \in V$. Prove that there exists a basis b_1, \ldots, b_n of V for which $\phi(b_i) \in \{0, b_i, b_{i-1}\}$ for every $i = 1, \ldots, n$.
- 9. Show that the following three are equivalent:
 - (a) There is a non-trivial subspace $0 \neq W \subsetneq F^n$ with $Mw \in W$ for all $w \in W$.
 - (b) M is similar to a matrix of the form

$$\left(\begin{array}{cc}A & B\\0 & C\end{array}\right)$$

for some matrices A, B, C with entries in F (of sizes $m_1 \times m_1, m_1 \times m_2, m_2 \times m_2$ for some $m_1, m_2 > 0$).

(c) The characteristic polynomial $f \in F[x]$ of M is reducible in F[x].

Note: Proving (a) \implies (b) \implies (c) gives you credit for 1 full exercise, and proving (c) \implies (a) is bonus (hint: view F^n as an F[x]-module).

- 10. Let M be an $\mathbb{F}_p[x]$ -module of dimension 3 (dimension as \mathbb{F}_p -vector space). Suppose that M is not a cyclic module.
 - (a) Let $r = x^p x$ and let $m \in M$. Show that $r^2m = 0$.
 - (b) Must rm also be 0?