## Sample questions.

1. Let $M$ be a finitely generated module over a PID $R$. Let $m \in M$. The annihilator of $m$ is the set of all $r \in R$ with $r m=0$. The annihilator of $M$ is the of all $r \in R$ for which $r m=0$ for all $m \in M$. Show that there exists $m \in M$ whose annihilator is equal to the annihilator of $M$.
2. Let $M$ be $\mathbb{Q}[x]$-module, and a $\mathbb{Q}$-vector space of dimension $n$. Let $(f)$ be the annihilator of $M$. Show that the degree of $f$ is $n$ if and only if $M$ is a cyclic $\mathbb{Q}[x]$-module.
3. Let $\mathbb{F}_{2}$ be the field with 2 elements and let $R=\mathbb{F}_{2}[x]$. Up to isomorphism, how many $R$-modules exist with precisely 8 elements?
4. For $a, b \in \mathbb{Z}$ let $v=(a, b)$ in the abelian group $\mathbb{Z} \times \mathbb{Z}$. Show that the quotient group $\mathbb{Z} \times \mathbb{Z} /\langle v\rangle$ is cyclic if and only if $\operatorname{gcd}(a, b)=1$.
5. Let $R$ be a PID, and let $\phi: R^{n} \rightarrow R^{n}$ be a homomorphism of $R$-modules. Show that for some $d$ there is a surjective homomorphism $\phi_{2}: R^{n} \rightarrow R^{d}$ with the same kernel as $\phi$.
6. Let $R$ be a PID and let $M$ be a finitely generated $R$-module. Show that the following are equivalent:
(a) $M$ is not cyclic.
(b) There exists a surjective $R$-module homomorphism

$$
\phi: M \rightarrow R / I \times R / I
$$

for some ideal $I \subsetneq R$.
7. Let $f(x)$ and $g(x)$ be two polynomials in $\mathbb{R}[x]$ of degree 3 . Suppose that $f^{\prime}(x)>0$ and $g^{\prime}(x)>0$ for every $x \in \mathbb{R}$. Prove that $\mathbb{R}[x] /(f(x))$ and $\mathbb{R}[x] /(g(x))$ are isomorphic as rings.
8. (These last questions use material that will be covered this week).

Let $V$ be an $\mathbb{R}$-vector space of dimension $n$. Let $\phi: V \rightarrow V$ be a linear map for which $\phi^{3}(v)=\phi^{2}(v)$ for all $v \in V$. Prove that there exists a basis $b_{1}, \ldots, b_{n}$ of $V$ for which $\phi\left(b_{i}\right) \in\left\{0, b_{i}, b_{i-1}\right\}$ for every $i=1, \ldots, n$.
9. Show that the following three are equivalent:
(a) There is a non-trivial subspace $0 \neq W \subsetneq F^{n}$ with $M w \in W$ for all $w \in W$.
(b) $M$ is similar to a matrix of the form

$$
\left(\begin{array}{cc}
A & B \\
0 & C
\end{array}\right)
$$

for some matrices $A, B, C$ with entries in $F$ (of sizes $m_{1} \times m_{1}, m_{1} \times m_{2}$, $m_{2} \times m_{2}$ for some $\left.m_{1}, m_{2}>0\right)$.
(c) The characteristic polynomial $f \in F[x]$ of $M$ is reducible in $F[x]$.

Note: Proving $(\mathrm{a}) \Longrightarrow(\mathrm{b}) \Longrightarrow(\mathrm{c})$ gives you credit for 1 full exercise, and proving $(\mathrm{c}) \Longrightarrow(\mathrm{a})$ is bonus (hint: view $F^{n}$ as an $F[x]$-module).
10. Let $M$ be an $\mathbb{F}_{p}[x]$-module of dimension 3 (dimension as $\mathbb{F}_{p}$-vector space). Suppose that $M$ is not a cyclic module.
(a) Let $r=x^{p}-x$ and let $m \in M$. Show that $r^{2} m=0$.
(b) Must $r m$ also be 0 ?

