Solving problems with the LLL algorithm

Mark van Hoeij

A lattice is a discrete \mathbb{Z} -module $\subseteq \mathbb{R}^n$

Example: If $b_1, b_2 \in \mathbb{R}^2$ are \mathbb{R} -linearly independent then

```
L = \text{SPAN}_{\mathbb{Z}}(b_1, b_2) = \{n_1b_1 + n_2b_2 \mid n_1, n_2 \in \mathbb{Z}\}
```

is a lattice of rank 2 and b_1, b_2 is a basis of L.

Lattice basis reduction

Input: a basis of *L*. **Output**: a good basis of *L*.

- For rank 2 this is easy (≈ Euclidean algorithm). For a long time it was not known how to handle rank n > 2 until:
- [LLL 1982] (Lenstra, Lenstra, Lovász): Efficient algorithm for any rank.
- Has lots of applications!

Figure 1: A lattice with a bad basis b_1, b_2 and a good basis v_1, v_2 .

 $L = \{ \text{dots in Figure 1} \} = \text{SPAN}_{\mathbb{Z}}(b_1, b_2) = \text{SPAN}_{\mathbb{Z}}(v_1, v_2)$

Gram-Schmidt process (n = 2)

•
$$v_1^* = v_1$$

• $v_2^* = v_2 - \mu v_1^*$ Compute $\mu \in \mathbb{R}$ such that $v_1^* \perp v_2^*$.

G.S.-vectors $v_1^*, \ldots, v_n^* \rightsquigarrow$ very useful information on L even though v_2^*, \ldots, v_n^* are generally not in L.

b_1, b_2 is a bad basis because:

- b_1, b_2 are almost parallel,
- $\min(\|b_1^*\|, \|b_2^*\|)$ is tiny, and thus a poor bound:

Let $b^{\min} := \min(||b_i^*||)$ Shortest-vector-bound:

 $b^{\min} \leq ||$ shortest $v \neq 0$ in L||

Given a bad basis b_1, b_2 , how to find a good basis?

- Subtract an integer-multiple of a one vector from another. (First step in the picture is: replace b_1 with $b_1 - b_2$).
- 2 Repeat as long as Step 1 can make a vector shorter.

This strategy works well for rank n = 2.

Efforts to extend to n > 2 failed until the breakthrough [LLL 1982], which uses lengths of G.S.-vectors b_i^* and not the lengths of the b_i themselves!

Theorem (Fermat)

If p prime and $p \equiv 1 \mod 4$, then $p = a^2 + b^2$ for some $a, b \in \mathbb{Z}$.

How to find $a, b \in \mathbb{Z}$ with $a^2 + b^2$ equal to p?

Observation: $a^2 + b^2 \equiv 0 \mod p$

Hence $a \equiv \alpha b \mod p$ for some solution of $\alpha^2 + 1 \equiv 0 \mod p$.

Compute α (e.g. Berlekamp's algorithm). Then

$$\begin{pmatrix} \pm a \\ b \end{pmatrix} \in \operatorname{SPAN}_{\mathbb{Z}} \begin{pmatrix} p \\ 0 \end{pmatrix}, \begin{pmatrix} \alpha \\ 1 \end{pmatrix})$$

(the \pm is irrelevant) ($\alpha^2 + 1 \equiv 0$ has two solutions mod p)

lf

$$v = \begin{pmatrix} a \\ b \end{pmatrix} \in \operatorname{SPAN}_{\mathbb{Z}}\begin{pmatrix} p \\ 0 \end{pmatrix}, \begin{pmatrix} \alpha \\ 1 \end{pmatrix})$$

then

$$||v^2|| = a^2 + b^2 \equiv (\alpha b)^2 + b^2 = (\alpha^2 + 1)b^2 \equiv 0 \mod p.$$

So $||v||^2$ is divisible by *p*. So $||v||^2$ is *p* if *v* is short enough: $0 < ||v||^2 < 2p$

Such v is easy to find in a good basis.

However,
$$\left\{ \begin{pmatrix} p \\ 0 \end{pmatrix}, \begin{pmatrix} \alpha \\ 1 \end{pmatrix} \right\}$$
 is a bad basis (angle $\approx 10^{-400}$ radians!)

The simple strategy from slide 6 reduces the bad basis to a good basis.

From it we can immediately read off a solution:

 $\left(\begin{array}{c} a \\ b \end{array}\right) = \left(\begin{array}{c} 858038135984417422601\ldots 0688928009299704710 \\ 513585978387637054198\ldots 0249251426547937937 \end{array}\right)$

The computation (finding α and reducing the basis) takes < 0.1 seconds.

Lattice basis reduction for arbitrary rank n

Apply the Gram-Schmidt process to b_1, \ldots, b_n

•
$$b_1^* = b_1$$

. . .

•
$$b_2^* = b_2 - \mu_{2,1} b_1^*$$

(take $\mu_{ij} \in \mathbb{R}$ s.t. $b_i^* \perp b_j^*$) (j < i)

•
$$b_3^* = b_3 - \mu_{3,1}b_1^* - \mu_{3,2}b_2^*$$

 $Det(L) = ||b_1^*|| \cdots ||b_n^*||$ (the determinant is basis-independent).

Replacing $b_i \leftarrow b_i - k b_j$ reduces μ_{ij} to $\mu_{ij} - k$ $(k \in \mathbb{Z})$.

LLL lattice basis reduction

• Reduce to $|\mu_{ij}| \leq 0.51$ (≤ 0.5 if μ_{ij} known exactly).

If swapping b_{i-1} ↔ b_i increases ||b_i^{*}|| at least 10% for some i, then do so and go back to Step 1.

Output: good basis: $||b_{i-1}^*|| \leq 1.33 \cdot ||b_i^*||$ and $|\mu_{ij}| \leq 0.51$

Properties of LLL reduced basis

If Output(LLL) = $b_1, ..., b_n$ then $||b_1^*|| \le 1.33 \cdot ||b_2^*|| \le 1.33^2 \cdot ||b_3^*|| \le \dots \le 1.33^{n-1} \cdot b^{\min}$

hence

 $\|b_1\| \leq f_n \cdot \|\text{shortest } v \neq 0 \text{ in } L\| \qquad \text{``fudge factor''} \ f_n = 1.33^{n-1}$

If *L* has a short non-zero vector then b_1 is not much longer. If *L* has short independent S_1, \ldots, S_k then b_1, \ldots, b_k are not much longer.

Many problems P can be solved this way:

- Construct a lattice $L = SPAN_{\mathbb{Z}}(b_1, ..., b_n)$ for which Solution(P) can be read some solution-vectors $S_1, ..., S_k \in L$.
- ② Construct *L* in such a way that vectors in $L \text{SPAN}_{\mathbb{Z}}(S_1, ..., S_k)$ are ≥ f_n times longer than $S_1, ..., S_k$.
- **③** Replace b_1, \ldots, b_n by an LLL-reduced basis, then:

• $S_1, \ldots, S_k \in SPAN_{\mathbb{Z}}(b_1, \ldots, b_k)$. Separates S_1, \ldots, S_k from rest of L

Application #2: Reconstruct algebraic number from an approximation

Suppose β is an algebraic number, a root of an irreducible $P \in \mathbb{Z}[x]$. Suppose $P = \sum_{i=0}^{n-1} c_i x^i$ with $|c_i| \leq 10^b$.

Suppose we have an approximation $\alpha \in \mathbb{R}$ with error $< 10^{-a}$. We need $a \ge bn + \epsilon n^2$ because *P* has $\approx bn$ digits of data. (fudge factor $f_n \rightsquigarrow \epsilon n^2$)

Problem: Compute exact β (compute P) from the approximation α .

Can read *P* from solution-vector $S := (c_0, \ldots, c_{n-1}) \in \mathbb{Z}^n$. **Problem**: \mathbb{Z}^n contains unwanted vectors as well.

S =Sculpture \subseteq rock. Use chisel to separate unwanted rock.

Idea:

Add one (or more) entries $\mathbb{Z}^n \to \mathbb{Z}^{n+1}$ that make unwanted vectors at least f_n times longer than S. Use LLL to separate them.

Application #2: Reconstruct algebraic number from an approximation

Define $E: \mathbb{Z}^n \to \mathbb{Z}^{n+1}$

$$(c_0,\ldots,c_{n-1})\mapsto (c_0,\ldots,c_{n-1},\sum c_i\left[10^a\alpha^i\right])$$

 $b_1, \ldots, b_n \coloneqq E(\text{ standard basis of } \mathbb{Z}^n)$

 b_1, \ldots, b_n spans a lattice $L \subseteq \mathbb{Z}^{n+1}$ of rank n.

 b_1, \ldots, b_n is a bad basis. **Typical example**: degree(P) < 40 and |coefficients| $\leq 10^{100}$. Angles will be $\approx 10^{-4000}$ radians!

LLL quickly turns this into a good basis.

With suitable precision *a*, this either leads to the minpoly $P = \sum c_i x^i$ or a proof that no *P* exists within the chosen bounds.

Theorem (LLL 1982)

Factoring in $\mathbb{Q}[x]$ can be done in polynomial time.

Proof sketch: Compute a root of *f* to precision *a*. Use the previous slide to compute its minpoly. Choose *a* in such a way that this produces either a non-trivial factor, or an irreducibility proof.

- [LLL 1982] uses a *p*-adic root, while [Schönhage 1984] uses a real or complex root. Both work in polynomial time.
- Neither was used in computer algebra systems;
 [Zassenhaus 1969] (not polynomial time!) is usually much faster.
- **③** Faster algorithm [vH 2002]: apply LLL to a much smaller lattice.

Integer solutions of approximate and/or modular equations.

Find: $x_1, \ldots, x_n \in \mathbb{Z}$ when given:

- Approximate linear equations: $|a_{i,1}x_1 + \dots + a_{i,n}x_n| < \epsilon_i$ $(a_{ij} \in \mathbb{R})$
- ② or modular linear equations $b_{i,1}x_1 + \dots + b_{i,n}x_n \equiv 0 \mod m_i$
- or a mixture of the above, and other variations

then use LLL.

- Linear equations over ℝ: Ordinary linear algebra gives a basis solutions over ℝ, but this does not help to find solutions over ℤ.
- Equations (approximate and/or modular etc.) are inserted in a lattice by adding entries (like E : Zⁿ → Zⁿ⁺¹ on p. 13).
- [vH, Novocin 2010]: Efficient method for: "amount(data in equations)" >> "amount(data in solution)"

Application: Integer relation finding

Given $a_1, \ldots, a_n \in \mathbb{R}$, find $x_1, \ldots, x_n \in \mathbb{Z}$ (say $|x_i| \leq 10^{100}$) with $a_1x_1 + \cdots + a_nx_n = 0.$

Notable algorithms:

- [LLL 1982]
- [PSLQ 1992] (= [HJLS 1986] ?)

Beautiful applications e.g. $\mathsf{PSLQ} \rightsquigarrow \mathsf{Bailey}\text{-}\mathsf{Borwein}\text{-}\mathsf{Plouffe}$ formula for π

- [LLL 1982] is a more complete solution because [PSLQ 1992] gave no bound(precision(a_i)) → provable result.
- PSLQ won SIAM Top 10 Algorithms of the Century award.
- The fastest implementations I have seen can handle *n* = 500 (using modern versions of LLL).

Polynomial factorization until 2000.

 $f \in \mathbb{Z}[x]$, degree *N*, square-free and primitive.

Step 1:

Factor $f \equiv f_1 \cdots f_r \mod p$ and Hensel lift:

$$f\equiv f_1\cdots f_r \ {\rm mod} \ p^a$$

Step 2 in [Zassenhaus 1969]:

- Try S ⊆ {f₁,..., f_r} with 1,2,...[r/2] elements, and check if the product (lifted to Z[x]) is a factor of f in Z[x].
- Up to 2^{r-1} cases $S \subseteq \{f_1, \ldots, f_r\}$ (Combinatorial Problem)

[LLL 1982] Bypasses Combinatorial Problem:

- $L := \{(c_0, ..., c_{N-1}) \mid \sum c_i x^i \equiv 0 \mod (p^a, f_1)\}$
- LLL-reduce, take first vector, and compute $gcd(f, \sum c_i x^i)$.

(rank = N)

Factor f in $\mathbb{Q}[x]$, degree N = 1000

[LLL 1982] reduces a lattice of rank N

- Algorithm runs in polynomial time.
- However, lattice reduction for rank 500 is very time consuming.
- rank N = 1000 is a problem!

[Zassenhaus 1969] tries $\leq 2^{r-1}$ cases

٩	$r = 12 \rightsquigarrow \odot$	(Finishes in seconds)
•	<i>r</i> = 80 → ☺	(Millions of years, even with 10^9 cases per second)

If: f has degree N = 1000, few factors in $\mathbb{Q}[x]$ but r = 80 factors in $\mathbb{F}_p[x]$ Then: Out of reach for any algorithm in 2000.

However, 80 bits of data reduces CPU time from eons to seconds!

[vH 2002]: Use lattice reduction to compute **only those bits!** (rank \approx r)

Factor f in $\mathbb{Q}[x]$, degree N, with $f \equiv f_1 \cdots f_r \mod p^a$

[LLL 1982]: (polynomial time)

Reduce a lattice of rank N (and large entries)

[Zassenhaus 1969]: (not poly time, usually faster than [LLL 1982]) Try (exponentially many) subsets $S \subseteq \{f_1, \ldots, f_r\}$ (Combinatorial Problem)

[vH 2002]: (fastest)

- $S \iff (v_1, \ldots, v_r) \in \{0, 1\}^r$
- Insert data: $\{0,1\}^r \subseteq \mathbb{Z}^r \to \mathbb{Z}^{r+\epsilon}$ to construct lattice of rank $r + \epsilon$
- Sequence of lattice reductions leads to v_1, \ldots, v_r , and hence S.
- Test (as in Zassenhaus) if $\prod S \mod p^a \rightsquigarrow a$ factor in $\mathbb{Q}[x]$.
- [vH 2002]: correctness and termination proof, no complexity bound.
- Complexity bound: [vH, Novocin 2010] and [vH 2013].

[vH 2002] factoring

- $S \subseteq \{f_1, \ldots, f_r\} \iff v \in \{0, 1\}^r \subseteq \mathbb{Z}^r \to \mathbb{Z}^{r+\epsilon}$
- If: we have: approximate/modular linear equations for v = (v₁,..., v_r) then: lattice reduction → v.
- However, the factor $\prod S = \prod f_i^{v_i}$ of f depends non-linearly on v.
- Idea: coefficients $(f \cdot f'_i/f_i) \sim$ equations for v (f'_i/f_i) is the logarithmic derivative; turns products into sums)

- [vH 2002] runs fast; lattice reduction is only used to construct r bits.
- Lots of data in coefficients $(f \cdot f'_i/f_i)$ $N \cdot \log_2(p^a)$ bits $\rightsquigarrow r$ bits.
- How to select from this data? (select all \sim no speedup)
- Arbitrary choice \rightsquigarrow fast in practice but no complexity bound.
- [vH Novocin 2010] and [vH 2013] solve this → best complexity bound and practical performance, in the same algorithm.

References, polynomial factorization over $\ensuremath{\mathbb{Q}}$

H. Zassenhaus (1969)

On Hensel Factorization I.

- J. Number Theory, 1, 291-311
- Lenstra, Lenstra, Lovász (1982)

Factoring polynomials with rational coefficients *Math Ann.* 261, 515-534

M. van Hoeij (2002)

Factoring polynomials and the knapsack problem

J. of Number Theory, 95, 167-189

M. van Hoeij, A. Novocin (2010)

Gradual sub-lattice reduction and a new complexity for factoring polynomials *LATIN*, 539-553

M. van Hoeij (2013)

The complexity of factoring univariate polynomials over the rationals *ISSAC'2013 tutorial*, slides at www.math.fsu.edu/~hoeij