Solving problems with the LLL algorithm

Mark van Hoeij

Lattice basis reduction (LLL)

A lattice is a discrete \mathbb{Z}-module $\subseteq \mathbb{R}^{n}$

Example: If $b_{1}, b_{2} \in \mathbb{R}^{2}$ are \mathbb{R}-linearly independent then

$$
L=\operatorname{SPAN}_{\mathbb{Z}}\left(b_{1}, b_{2}\right)=\left\{n_{1} b_{1}+n_{2} b_{2} \mid n_{1}, n_{2} \in \mathbb{Z}\right\}
$$

is a lattice of rank 2 and b_{1}, b_{2} is a basis of L.

Lattice basis reduction

Input: a basis of L.
Output: a good basis of L.

- For rank 2 this is easy (\approx Euclidean algorithm). For a long time it was not known how to handle rank $n>2$ until:
- [LLL 1982] (Lenstra, Lenstra, Lovász): Efficient algorithm for any rank.
- Has lots of applications!

Figure 1: A lattice with a bad basis b_{1}, b_{2} and a good basis v_{1}, v_{2}.

$$
L=\{\text { dots in Figure } 1\}=\operatorname{SPAN}_{\mathbb{Z}}\left(b_{1}, b_{2}\right)=\operatorname{SPAN}_{\mathbb{Z}}\left(v_{1}, v_{2}\right)
$$

Gram-Schmidt process $(n=2)$

(1) $v_{1}^{*}=v_{1}$
(2) $v_{2}^{*}=v_{2}-\mu v_{1}^{*} \quad$ Compute $\mu \in \mathbb{R}$ such that $v_{1}^{*} \perp v_{2}^{*}$.
G.S.-vectors $v_{1}^{*}, \ldots, v_{n}^{*} \leadsto$ very useful information on L even though $v_{2}^{*}, \ldots, v_{n}^{*}$ are generally not in L.

b_{1}, b_{2} is a bad basis because:

(1) b_{1}, b_{2} are almost parallel,
(2) $\left\|b_{2}^{*}\right\| \ll\left\|b_{2}\right\|$
(good basis $\Longrightarrow\left\|v_{i}^{*}\right\| \approx\left\|v_{i}\right\|$)
(3) $\min \left(\left\|b_{1}^{*}\right\|,\left\|b_{2}^{*}\right\|\right)$ is tiny, and thus a poor bound:

Let $b^{\min }:=\min \left(\left\|b_{i}^{*}\right\|\right)$
Shortest-vector-bound: $\quad b^{\min } \leqslant \|$ shortest $v \neq 0$ in $L \|$

Given a bad basis b_{1}, b_{2}, how to find a good basis?

(1) Subtract an integer-multiple of a one vector from another.
(First step in the picture is: replace b_{1} with $b_{1}-b_{2}$).
(2) Repeat as long as Step 1 can make a vector shorter.

This strategy works well for rank $n=2$.
Efforts to extend to $n>2$ failed until the breakthrough [LLL 1982], which uses lengths of G.S.-vectors b_{i}^{*} and not the lengths of the b_{i} themselves!

Application \#1: $p=a^{2}+b^{2}$

Theorem (Fermat)

If p prime and $p \equiv 1 \bmod 4$, then $p=a^{2}+b^{2}$ for some $a, b \in \mathbb{Z}$.

Example: $p=10^{400}+69=10000000000000$
 00000000000069

How to find $a, b \in \mathbb{Z}$ with $a^{2}+b^{2}$ equal to p ?

Observation: $a^{2}+b^{2} \equiv 0 \bmod p$
Hence $a \equiv \alpha b \bmod p$ for some solution of $\alpha^{2}+1 \equiv 0 \bmod p$.
Compute α (e.g. Berlekamp's algorithm). Then

$$
\binom{ \pm a}{b} \in \operatorname{SPAN}_{\mathbb{Z}}\left(\binom{p}{0},\binom{\alpha}{1}\right)
$$

(the \pm is irrelevant) $\quad\left(\alpha^{2}+1 \equiv 0\right.$ has two solutions $\left.\bmod p\right)$

Application \#1: $p=a^{2}+b^{2}$

$p=10^{400}+69=1000000000000000000 \ldots \ldots . .000000000000000069$

Find: $a, b \in \mathbb{Z}$ with $a^{2}+b^{2}=p$.
If

$$
v=\binom{a}{b} \in \operatorname{SPAN}_{\mathbb{Z}}\left(\binom{p}{0},\binom{\alpha}{1}\right)
$$

then

$$
\left\|v^{2}\right\|=a^{2}+b^{2} \equiv(\alpha b)^{2}+b^{2}=\left(\alpha^{2}+1\right) b^{2} \equiv 0 \bmod p .
$$

So $\|v\|^{2}$ is divisible by p.
So $\|v\|^{2}$ is p if v is short enough: $0<\|v\|^{2}<2 p$
Such v is easy to find in a good basis.
However, $\left\{\binom{p}{0},\binom{\alpha}{1}\right\}$ is a bad basis (angle $\approx 10^{-400}$ radians!)

Application \#1: $p=a^{2}+b^{2}$

$$
p=10^{400}+69=1000000000000000000 \ldots \ldots . . .000000000000000069
$$

Find: $a, b \in \mathbb{Z}$ with $a^{2}+b^{2}=p$.
The simple strategy from slide 6 reduces the bad basis to a good basis.
From it we can immediately read off a solution:

$$
\binom{a}{b}=\binom{858038135984417422601 \ldots \ldots 0688928009299704710}{513585978387637054198 \ldots .0249251426547937937}
$$

The computation (finding α and reducing the basis) takes <0.1 seconds.

Lattice basis reduction for arbitrary rank n

Apply the Gram-Schmidt process to b_{1}, \ldots, b_{n}

- $b_{1}^{*}=b_{1}$
- $b_{2}^{*}=b_{2}-\mu_{2,1} b_{1}^{*}$
(take $\mu_{i j} \in \mathbb{R}$ s.t. $\left.b_{i}^{*} \perp b_{j}^{*}\right) \quad(j<i)$
- $b_{3}^{*}=b_{3}-\mu_{3,1} b_{1}^{*}-\mu_{3,2} b_{2}^{*}$
$\operatorname{Det}(L)=\left\|b_{1}^{*}\right\| \cdots\left\|b_{n}^{*}\right\| \quad$ (the determinant is basis-independent).
Replacing $b_{i} \leftarrow b_{i}-k b_{j}$ reduces $\mu_{i j}$ to $\mu_{i j}-k \quad(k \in \mathbb{Z})$.

LLL lattice basis reduction

(1) Reduce to $\left|\mu_{i j}\right| \leqslant 0.51 \quad$ ($\leqslant 0.5$ if $\mu_{i j}$ known exactly).
(2) If swapping $b_{i-1} \leftrightarrow b_{i}$ increases $\left\|b_{i}^{*}\right\|$ at least 10% for some i, then do so and go back to Step 1.

Output: good basis: $\quad\left\|b_{i-1}^{*}\right\| \leqslant 1.33 \cdot\left\|b_{i}^{*}\right\|$ and $\left|\mu_{i j}\right| \leqslant 0.51$

Properties of LLL reduced basis

If Output(LLL) $=b_{1}, \ldots, b_{n}$ then

$$
\left\|b_{1}^{*}\right\| \leqslant 1.33 \cdot\left\|b_{2}^{*}\right\| \leqslant 1.33^{2} \cdot\left\|b_{3}^{*}\right\| \leqslant \cdots \leqslant 1.33^{n-1} \cdot b^{\min }
$$

hence

$$
\left\|b_{1}\right\| \leqslant f_{n} \cdot \| \text { shortest } v \neq 0 \text { in } L \| \quad \text { "fudge factor" } f_{n}=1.33^{n-1}
$$

If L has a short non-zero vector then b_{1} is not much longer.
If L has short independent S_{1}, \ldots, S_{k} then b_{1}, \ldots, b_{k} are not much longer.
Many problems P can be solved this way:
(1) Construct a lattice $L=\operatorname{SPAN}_{\mathbb{Z}}\left(b_{1}, \ldots, b_{n}\right)$ for which Solution (P)
can be read some solution-vectors $S_{1}, \ldots, S_{k} \in L$.
(2) Construct L in such a way that vectors in $L-\operatorname{SPAN}_{\mathbb{Z}}\left(S_{1}, \ldots, S_{k}\right)$ are $\geqslant f_{n}$ times longer than S_{1}, \ldots, S_{k}.
(3) Replace b_{1}, \ldots, b_{n} by an LLL-reduced basis, then:
(9) $S_{1}, \ldots, S_{k} \in \operatorname{SPAN}_{\mathbb{Z}}\left(b_{1}, \ldots, b_{k}\right)$. Separates S_{1}, \ldots, S_{k} from rest of L

Application \#2:

Reconstruct algebraic number from an approximation

Suppose β is an algebraic number, a root of an irreducible $P \in \mathbb{Z}[x]$. Suppose $P=\sum_{i=0}^{n-1} c_{i} x^{i}$ with $\left|c_{i}\right| \leqslant 10^{b}$.

Suppose we have an approximation $\alpha \in \mathbb{R}$ with error $<10^{-a}$. We need $a \geqslant b n+\epsilon n^{2}$ because P has $\approx b n$ digits of data. (fudge factor $f_{n} \leadsto \epsilon n^{2}$)

Problem: Compute exact β (compute P) from the approximation α.
Can read P from solution-vector $S:=\left(c_{0}, \ldots, c_{n-1}\right) \in \mathbb{Z}^{n}$.
Problem: \mathbb{Z}^{n} contains unwanted vectors as well.
$S=$ Sculpture \subseteq rock.
Use chisel to separate unwanted rock.

Idea:

Add one (or more) entries $\mathbb{Z}^{n} \rightarrow \mathbb{Z}^{n+1}$ that make unwanted vectors at least f_{n} times longer than S. Use LLL to separate them.

Application \#2:
 Reconstruct algebraic number from an approximation

Define $E: \mathbb{Z}^{n} \rightarrow \mathbb{Z}^{n+1}$

$$
\left(c_{0}, \ldots, c_{n-1}\right) \mapsto\left(c_{0}, \ldots, c_{n-1}, \sum c_{i}\left[10^{a} \alpha^{i}\right]\right)
$$

$b_{1}, \ldots, b_{n}:=E\left(\right.$ standard basis of $\left.\mathbb{Z}^{n}\right)$
b_{1}, \ldots, b_{n} spans a lattice $L \subseteq \mathbb{Z}^{n+1}$ of rank n.
b_{1}, \ldots, b_{n} is a bad basis. Typical example: degree $(P)<40$ and \mid coefficients $\mid \leqslant 10^{100}$. Angles will be $\approx 10^{-4000}$ radians!

LLL quickly turns this into a good basis.
With suitable precision a, this either leads to the minpoly $P=\sum c_{i} x^{i}$ or a proof that no P exists within the chosen bounds.

Application \#3: Polynomial-time factorization

Theorem (LLL 1982)

Factoring in $\mathbb{Q}[x]$ can be done in polynomial time.
Proof sketch: Compute a root of f to precision a. Use the previous slide to compute its minpoly. Choose a in such a way that this produces either a non-trivial factor, or an irreducibility proof.

Remarks:

(1) [LLL 1982] uses a p-adic root, while [Schönhage 1984] uses a real or complex root. Both work in polynomial time.
(2) Neither was used in computer algebra systems;
[Zassenhaus 1969] (not polynomial time!) is usually much faster.
(3) Faster algorithm [vH 2002]: apply LLL to a much smaller lattice.

Integer solutions of approximate and/or modular equations.

Find: $x_{1}, \ldots, x_{n} \in \mathbb{Z}$ when given:
(1) Approximate linear equations: $\left|a_{i, 1} x_{1}+\cdots+a_{i, n} x_{n}\right|<\epsilon_{i}$
(2) or modular linear equations $b_{i, 1} x_{1}+\cdots+b_{i, n} x_{n} \equiv 0 \bmod m_{i}$
(3) or a mixture of the above, and other variations
then use LLL.

Remarks:

- Linear equations over \mathbb{R} : Ordinary linear algebra gives a basis solutions over \mathbb{R}, but this does not help to find solutions over \mathbb{Z}.
- Equations (approximate and/or modular etc.) are inserted in a lattice by adding entries (like $E: \mathbb{Z}^{n} \rightarrow \mathbb{Z}^{n+1}$ on p .13).
- [vH, Novocin 2010]: Efficient method for: "amount(data in equations)" >> "amount(data in solution)"

Application: Integer relation finding

Given $a_{1}, \ldots, a_{n} \in \mathbb{R}$, find $x_{1}, \ldots, x_{n} \in \mathbb{Z}$ (say $\left|x_{i}\right| \leqslant 10^{100}$) with

$$
a_{1} x_{1}+\cdots+a_{n} x_{n}=0
$$

Notable algorithms:

- [LLL 1982]
- [PSLQ 1992] (\equiv [HJLS 1986] ?)

Beautiful applications e.g. PSLQ \leadsto Bailey-Borwein-Plouffe formula for π

Remarks:

- [LLL 1982] is a more complete solution because [PSLQ 1992] gave no bound $\left(\right.$ precision $\left.\left(a_{i}\right)\right) \sim$ provable result.
- PSLQ won SIAM Top 10 Algorithms of the Century award.
- The fastest implementations I have seen can handle $n=500$ (using modern versions of LLL).

Polynomial factorization until 2000.

$f \in \mathbb{Z}[x]$, degree N, square-free and primitive.

Step 1:

Factor $f \equiv f_{1} \cdots f_{r} \bmod p$ and Hensel lift:

$$
f \equiv f_{1} \cdots f_{r} \bmod p^{a}
$$

Step 2 in [Zassenhaus 1969]:

- Try $S \subseteq\left\{f_{1}, \ldots, f_{r}\right\}$ with $1,2, \ldots\lfloor r / 2\rfloor$ elements, and check if the product (lifted to $\mathbb{Z}[x]$) is a factor of f in $\mathbb{Z}[x]$.
- Up to 2^{r-1} cases $S \subseteq\left\{f_{1}, \ldots, f_{r}\right\} \quad$ (Combinatorial Problem)
[LLL 1982] Bypasses Combinatorial Problem:
- $L:=\left\{\left(c_{0}, \ldots, c_{N-1}\right) \mid \sum c_{i} x^{i} \equiv 0 \bmod \left(p^{a}, f_{1}\right)\right\}$
$($ rank $=N)$
- LLL-reduce, take first vector, and compute $\operatorname{gcd}\left(f, \sum c_{i} x^{i}\right)$.

Factor f in $\mathbb{Q}[x]$, degree $N=1000$

[LLL 1982] reduces a lattice of rank N

- Algorithm runs in polynomial time.
- However, lattice reduction for rank 500 is very time consuming.
- rank $N=1000$ is a problem!
[Zassenhaus 1969] tries $\leqslant 2^{r-1}$ cases
- $r=12 \sim$ (;) (Finishes in seconds)
- $r=80 \sim$ () (Millions of years, even with 10^{9} cases per second)

If: f has degree $N=1000$, few factors in $\mathbb{Q}[x]$ but $r=80$ factors in $\mathbb{F}_{p}[x]$ Then: Out of reach for any algorithm in 2000.

However, $\mathbf{8 0}$ bits of data reduces CPU time from eons to seconds!
[vH 2002]: Use lattice reduction to compute only those bits! (rank $\approx r$)

Factor f in $\mathbb{Q}[x]$, degree N, with $f \equiv f_{1} \cdots f_{r} \bmod p^{a}$

[LLL 1982]: (polynomial time)

Reduce a lattice of rank N (and large entries)
[Zassenhaus 1969]: (not poly time, usually faster than [LLL 1982])
Try (exponentially many) subsets $S \subseteq\left\{f_{1}, \ldots, f_{r}\right\}$ (Combinatorial Problem)
[vH 2002]: (fastest)

- $S \Longleftrightarrow\left(v_{1}, \ldots, v_{r}\right) \in\{0,1\}^{r}$
- Insert data: $\{0,1\}^{r} \subseteq \mathbb{Z}^{r} \rightarrow \mathbb{Z}^{r+\epsilon}$ to construct lattice of rank $r+\epsilon$
- Sequence of lattice reductions leads to v_{1}, \ldots, v_{r}, and hence S.
- Test (as in Zassenhaus) if $\Pi S \bmod p^{a} \leadsto$ a factor in $\mathbb{Q}[x]$.
- [vH 2002]: correctness and termination proof, no complexity bound.
- Complexity bound: [vH, Novocin 2010] and [vH 2013].

[vH 2002] factoring

- $S \subseteq\left\{f_{1}, \ldots, f_{r}\right\} \Longleftrightarrow v \in\{0,1\}^{r} \subseteq \mathbb{Z}^{r} \rightarrow \mathbb{Z}^{r+\epsilon}$
- If: we have: approximate/modular linear equations for $v=\left(v_{1}, \ldots, v_{r}\right)$ then: lattice reduction $\sim v$.
- However, the factor $\Pi S=\Pi f_{i}^{v_{i}}$ of f depends non-linearly on v.
- Idea: coefficients $\left(f \cdot f_{i}^{\prime} / f_{i}\right) \leadsto$ equations for v (f_{i}^{\prime} / f_{i} is the logarithmic derivative; turns products into sums)
Remarks:
- [vH 2002] runs fast; lattice reduction is only used to construct r bits.
- Lots of data in coefficients $\left(f \cdot f_{i}^{\prime} / f_{i}\right) \quad N \cdot \log _{2}\left(p^{a}\right)$ bits $\sim r$ bits.
- How to select from this data? (select all \sim no speedup)
- Arbitrary choice \sim fast in practice but no complexity bound.
- [vH Novocin 2010] and [vH 2013] solve this \sim best complexity bound and practical performance, in the same algorithm.

References, polynomial factorization over \mathbb{Q}

H. Zassenhaus (1969)

On Hensel Factorization I.
J. Number Theory, 1, 291-311

T- Lenstra, Lenstra, Lovász (1982)
Factoring polynomials with rational coefficients
Math Ann. 261, 515-534
國 M. van Hoeij (2002)
Factoring polynomials and the knapsack problem
J. of Number Theory, 95, 167-189

M. van Hoeij, A. Novocin (2010)

Gradual sub-lattice reduction and a new complexity for factoring polynomials LATIN, 539-553
(R. M. van Hoeij (2013)

The complexity of factoring univariate polynomials over the rationals ISSAC'2013 tutorial, slides at www.math.fsu.edu/~hoeij

