Solving problems with the LLL algorithm

Mark van Hoeij

Mark van Hoeij Solving problems with the LLL algorithm 1/21

Lattice basis reduction (LLL)

A lattice is a discrete Z-module C R”

Example: If by, by € R? are R-linearly independent then
L= SPANz(bl, b2) = {n1b1 + n2b2 | ni, np € Z}

is a lattice of rank 2 and by, by is a basis of L.
Input: a basis of L.
Output: a good basis of L.

v

@ For rank 2 this is easy (» Euclidean algorithm). For a long time it was
not known how to handle rank n > 2 until:

o [LLL 1982] (Lenstra, Lenstra, Lovasz): Efficient algorithm for any rank.

@ Has lots of applications!

Mark van Hoeij Solving problems with the LLL algorithm 2/21

Figure 1. A lattice with a bad basis by, b, and a good basis vy, v».

L = {dots in Figure 1} = SPANy (b1, b2) = SPANy(v1,v»)

Mark van Hoeij

Solving problems with the LLL algorithm

3/21

QO vi=v

Q@ v; =vo—pvy Compute p € R such that vy L vy

G.S.-vectors vy, ..., v, ~ very useful information on L
even though v, ..., v, are generally not in L.
Mark van Hoeij Solving problems with the LLL algorithm

4/21

* %k
T, by
) o VH ok)
2V, b,
% _ o
L] Vl L]
\ %k . .
b2 ® .

by, b, is a bad basis because:

© bi, by are almost parallel,
Q [[63]| < [|b2| (good basis = [|v/|| ~ [|vi[)
© min(||b7]|,||b3]|) is tiny, and thus a poor bound:

Let b™ := min(||b]|)
Shortest-vector-bound: b™™ < |[shortest v # 0 in L||

Mark van Hoeij Solving problems with the LLL algorithm 5/21

Given a bad basis by, bo, how to find a good basis?

© Subtract an integer-multiple of a one vector from another.
(First step in the picture is: replace by with by — by).

@ Repeat as long as Step 1 can make a vector shorter.

This strategy works well for rank n = 2.

Efforts to extend to n > 2 failed until the breakthrough [LLL 1982], which
uses lengths of G.S.-vectors b and not the lengths of the b; themselves!

Mark van Hoeij Solving problems with the LLL algorithm 6 /21

Application #1: p = a2 + b?

Theorem (Fermat)
If p prime and p =1 mod 4, then p = a® + b® for some a, b ¢ Z.

Example: p = 10%% + 69 = 10000000000000 00000000000069

How to find a, b € Z with a? + b? equal to p?

Observation: a? + b?>=0 mod p

Hence a = b mod p for some solution of a®+1 =0 mod p.

Compute « (e.g. Berlekamp's algorithm). Then

(=2)eSPANz((P)(:))

(the + is irrelevant) (a?+1=0 has two solutions mod p)

Mark van Hoeij Solving problems with the LLL algorithm 7/21

Application #1: p = a2 + b?

p = 10%%0 + 69 = 1000000000000000000 000000000000000069

Find: a, b€ Z with a® + b% = p.

v:(z)espANZ((g),(‘f))

V2| = @ + b* = (ab)? + b? = (a® + 1)b* = 0 mod p.

If

then

So ||v||? is divisible by p.
So ||v|[? is p if v is short enough: 0 <||v|]* < 2p

Such v is easy to find in a good basis.

However, {(g),((f)} is a bad basis (angle ~ 107 radians!)

Mark van Hoeij Solving problems with the LLL algorithm 8/21

Application #1: p = a2 + b?

p = 10%%° + 69 = 1000000000000000000 000000000000000069

Find: a,beZ with a% + b% = p.

The simple strategy from slide 6 reduces the bad basis to a good basis.

From it we can immediately read off a solution:

a | [858038135984417422601...... 0688928009299704710
b |\ 513585978387637054198...... 0249251426547937937

The computation (finding a and reducing the basis) takes < 0.1 seconds.

Mark van Hoeij Solving problems with the LLL algorithm 9/21

Lattice basis reduction for arbitrary rank n

Apply the Gram-Schmidt process to by, ..., b,
@ bj=b
@ b} =by—po1b] (take pj e Rs.t. bf L b7) (j<i)
© b3 =b3—p31by - p32b;

Det(L) = ||b7]|--||bs]| (the determinant is basis-independent).
Replacing bj < bj — kb; reduces pjj to pjj—k (k€ Z).

LLL lattice basis reduction

@ Reduce to || <0.51 (<0.5 if pj; known exactly).

Q If swapping bj_1 <> bj increases ||b}|| at least 10% for some i, then do
so and go back to Step 1.

Output: good basis: ||b* ;|| <1.33-]|b/|| and |u;|<0.51

Mark van Hoeij Solving problems with the LLL algorithm 10 / 21

Properties of LLL reduced basis

If Output(LLL) = by, ..., b, then
||Ib}]] < 1.33-||b3]| < 1.33%-||b5]| < -+~ < 1.33" 1. pmin
hence
||b1]| < fr - ||shortest v # 0 in L|| “fudge factor” f, = 1.33"*

If L has a short non-zero vector then by is not much longer.
If L has short independent Sy,..., S, then by,..., by are not much longer.

Many problems P can be solved this way:
@ Construct a lattice L = SPANy(by, ..., bp) for which Solution(P)

can be read some solution-vectors Sy,...,Sy € L.
@ Construct L in such a way that vectors in L — SPANy (51, ..., S)
are > f, times longer than Sy, ..., Sk.

© Replace b1,..., b, by an LLL-reduced basis, then:
Q Si,...,5(€SPANy(by,...,bx). Separates Si,...,Si from rest of L

v

Mark van Hoeij Solving problems with the LLL algorithm 11 /21

Application #2:

Reconstruct algebraic number from an approximation

Suppose 3 is an algebraic number, a root of an irreducible P € Z[x].
Suppose P = Z,f':_ol cix' with |¢j| < 10°.

Suppose we have an approximation « € R with error < 1072. We need
a> bn+en? because P has ~ bn digits of data. (fudge factor f, ~ € n?)

Problem: Compute exact § (compute P) from the approximation .

Can read P from solution-vector S := (cp,...,Cp-1) € Z".
Problem: Z" contains unwanted vectors as well.

S = Sculpture ¢ rock. Use chisel to separate unwanted rock.

Add one (or more) entries Z" — Z™! that make unwanted vectors
at least f, times longer than S. Use LLL to separate them.

Mark van Hoeij Solving problems with the LLL algorithm 12 /21

Application #2:

Reconstruct algebraic number from an approximation

Define E : Z" — 7!

(coy---y¢cn-1) = (coy---,Cn-1, Zc,- [1030/])
bi,...,b, := E(standard basis of Z")
bi,..., b, spans a lattice L € Z"*! of rank n.

bi,..., by is a bad basis. Typical example: degree(P) < 40 and
|coefficients| < 101%°. Angles will be ~ 10709 radians!

LLL quickly turns this into a good basis.

i

With suitable precision a, this either leads to the minpoly P =} ¢ix
or a proof that no P exists within the chosen bounds.

Mark van Hoeij Solving problems with the LLL algorithm 13 /21

Application #3: Polynomial-time factorization

Theorem (LLL 1982)

Factoring in Q[x] can be done in polynomial time.

Proof sketch: Compute a root of f to precision a. Use the previous slide
to compute its minpoly. Choose a in such a way that this produces either
a non-trivial factor, or an irreducibility proof.

© [LLL 1982] uses a p-adic root, while [Schonhage 1984] uses a real or
complex root. Both work in polynomial time.

@ Neither was used in computer algebra systems;
[Zassenhaus 1969] (not polynomial time!) is usually much faster.

© Faster algorithm [vH 2002]: apply LLL to a much smaller lattice.

\

Mark van Hoeij Solving problems with the LLL algorithm 14 /21

Integer solutions of approximate and/or modular equations.

Find: x1,...,x, € Z when given:

@ Approximate linear equations: |aj 1x1 + -+ + aj nXn| < € (aj €R)
@ or modular linear equations bj 1x1 + - + b; px, =0 mod m;

© or a mixture of the above, and other variations

then use LLL.

Remarks:

@ Linear equations over R: Ordinary linear algebra gives a basis
solutions over R, but this does not help to find solutions over Z.

e Equations (approximate and/or modular etc.) are
inserted in a lattice by adding entries (like E : Z" — Z"*! on p. 13).

e [vH, Novocin 2010]: Efficient method for:
"amount(data in equations)” > "amount(data in solution)”

Mark van Hoeij Solving problems with the LLL algorithm 15 /21

Application: Integer relation finding

Given ay,...,a, €R, find x1,...,x, €Z (say |x;| < 10%%9) with

aiXiy + -+ apXp = 0.

Notable algorithms:
o [LLL 1982]
e [PSLQ 1992] (= [HJLS 1986] ?)

Beautiful applications e.g. PSLQ ~» Bailey-Borwein-Plouffe formula for 7

Remarks:
o [LLL 1982] is a more complete solution because [PSLQ 1992] gave no
bound(precision(a;)) ~ provable result.
@ PSLQ won SIAM Top 10 Algorithms of the Century award.

@ The fastest implementations | have seen can handle n =500
(using modern versions of LLL).

Mark van Hoeij Solving problems with the LLL algorithm 16 / 21

Polynomial factorization until 2000.

f € Z[x], degree N, square-free and primitive.

Factor f = f,---f, mod p
and Hensel lift:

f=f-f mod p°

Step 2 in [Zassenhaus 1969]:

@ Try Sc{f,....f,} with 1,2,...|r/2] elements, and check if the
product (lifted to Z[x]) is a factor of f in Z[x].

@ Upto2lcases Sc{f,...,f} (Combinatorial Problem)

[LLL 1982] Bypasses Combinatorial Problem:

o L:={(co,...,en-1)| L cix' =0 mod (p?,f)} (rank = N)
o LLL-reduce, take first vector, and compute ged(f, ¥ cix’).

Mark van Hoeij Solving problems with the LLL algorithm 17 /21

Factor f in Q[x], degree N =1000

[LLL 1982] reduces a lattice of rank N

@ Algorithm runs in polynomial time.

@ However, lattice reduction for rank 500 is very time consuming.
@ rank N = 1000 is a problem!

\

[Zassenhaus 1969] tries < 2771 cases

@ r=12~ © (Finishes in seconds)

o r=80~ @ (Millions of years, even with 10° cases per second)

v

If: f has degree N =1000, few factors in Q[x] but r = 80 factors in F,[x]
Then: Out of reach for any algorithm in 2000.

However, 80 bits of data reduces CPU time from eons to seconds!

[VH 2002]: Use lattice reduction to compute only those bits! (rank ~ r)

Mark van Hoeij Solving problems with the LLL algorithm 18 / 21

Factor f in Q[x], degree N, with f = f;---f, mod p?

[LLL 1982]: (polynomial time)

Reduce a lattice of rank N (and large entries)

[Zassenhaus 1969]: (not poly time, usually faster than [LLL 1982])
Try (exponentially many) subsets S € {f1,...,f,} (Combinatorial Problem)

[VH 2002]: (fastest)
@ S<—(v1,...,v,)€e{0,1}"

o Insert data: {0,1}" € Z" — Z"** to construct lattice of rank r + €

@ Sequence of lattice reductions leads to v, ..., Vv,, and hence S.

o Test (as in Zassenhaus) if [IS mod p? ~ a factor in Q[x].

@ [vH 2002]: correctness and termination proof, no complexity bound.
o Complexity bound: [vH, Novocin 2010] and [vH 2013].

Mark van Hoeij Solving problems with the LLL algorithm 19 /21

[vH 2002] factoring

e Sc{fi,...,f,} <= ve{0, 1} cZ 7"
o If: we have: approximate/modular linear equations for v = (v1,...,v,)
then: lattice reduction ~ v.
o However, the factor [TS =[] £ of f depends non-linearly on v.
o Idea: coefficients(f - f//f;) ~» equations for v
(f!/f; is the logarithmic derivative; turns products into sums)
Remarks:
e [vH 2002] runs fast; lattice reduction is only used to construct r bits.
e Lots of data in coefficients(f - f//f;) N -log,(p?) bits ~ r bits.
How to select from this data? (select all ~ no speedup)
Arbitrary choice ~» fast in practice but no complexity bound.

[vH Novocin 2010] and [vH 2013] solve this ~ best complexity bound
and practical performance, in the same algorithm.

Mark van Hoeij Solving problems with the LLL algorithm 20 /21

References, polynomial factorization over QQ

[8 H. Zassenhaus (1969)
On Hensel Factorization |.
J. Number Theory, 1, 291-311

[Lenstra, Lenstra, Lovész (1982)
Factoring polynomials with rational coefficients
Math Ann. 261, 515-534

ﬁ M. van Hoeij (2002)
Factoring polynomials and the knapsack problem
J. of Number Theory, 95, 167-189

@ M. van Hoeij, A. Novocin (2010)
Gradual sub-lattice reduction and a new complexity for factoring polynomials
LATIN, 539-553

ﬁ M. van Hoeij (2013)
The complexity of factoring univariate polynomials over the rationals
ISSAC’2013 tutorial, slides at www.math.fsu.edu/~hoeij

Mark van Hoeij Solving problems with the LLL algorithm 21 /21

