## Introduction to lattices

Let $b_{1}, \ldots, b_{r} \in \mathbb{R}^{n}$ be linearly independent over $\mathbb{R}$.
Consider the following $\mathbb{Z}$-module $\subset \mathbb{R}^{n}$

$$
L:=\mathbb{Z} b_{1}+\cdots+\mathbb{Z} b_{r}
$$

Such $L$ is called a lattice with basis $b_{1}, \ldots, b_{r}$.
Lattice reduction (LLL): Given a "bad" basis of $L$, compute a "good" basis of $L$.

What does this mean? Attempt $\# 1: b_{1}, \ldots, b_{r}$ is a "bad basis" when $L$ has another basis consisting of much shorter vectors.

However: To understand lattice reduction, it does not help to focus on lengths of vectors. What matters are: Gram-Schmidt lengths.

## Gram-Schmidt

$$
L=\mathbb{Z} b_{1}+\cdots+\mathbb{Z} b_{r}
$$

Given $b_{1}, \ldots, b_{r}$, the Gram-Schmidt process produces vectors $b_{1}^{*}, \ldots, b_{r}^{*}$ in $\mathbb{R}^{n}$ (not in $L!$ ) with:

$$
b_{i}^{*}:=b_{i} \quad \text { reduced } \bmod \quad \mathbb{R} b_{1}+\cdots+\mathbb{R} b_{i-1}
$$

i.e.
$b_{1}^{*}, \ldots, b_{r}^{*}$ are orthogonal
and

$$
b_{1}^{*}=b_{1}
$$

and

$$
b_{i}^{*} \equiv b_{i} \quad \bmod \text { prior vectors }
$$

## Gram-Schmidt, continued

$b_{1}, \ldots, b_{r}$ : A basis (as $\mathbb{Z}$-module) of $L$.
$b_{1}^{*}, \ldots, b_{r}^{*}$ : Gram-Schmidt vectors (not a basis of $L$ ).
$b_{i}^{*} \equiv b_{i} \bmod$ prior vectors
$\left\|b_{1}^{*}\right\|, \ldots,\left\|b_{r}^{*}\right\|$ are the Gram-Schmidt lengths and
$\left\|b_{1}\right\|, \ldots,\left\|b_{r}\right\|$ are the actual lengths of $b_{1}, \ldots, b_{r}$.
G.S. lengths are far more informative than actual lengths, e.g.

$$
\min \{\|v\|, \quad v \in L, v \neq 0\} \geqslant \min \left\{\left\|b_{i}^{*}\right\|, \quad i=1 \ldots r\right\} .
$$

G.S. lengths tell us immediately if a basis is bad (actual lengths do not).

## Good/bad basis of $L$

We say that $b_{1}, \ldots b_{r}$ is a bad basis if $\left\|b_{i}^{*}\right\| \ll\left\|b_{j}^{*}\right\|$ for some $i>j$.
Bad basis $=$ later vector(s) have much smaller G.S. length than earlier vector(s).

If $b_{1}, \ldots, b_{r}$ is bad in the G.S. sense, then it is also bad in terms of actual lengths. We will ignore actual lengths because:

- The actual lengths provides no obvious strategy for finding a better basis, making LLL a mysterious black box.
- In contrast, in terms of G.S. lengths the strategy is clear:
(a) Increase $\left\|b_{i}^{*}\right\|$ for large $i$, and
(b) Decrease $\left\|b_{i}^{*}\right\|$ for small $i$.

Tasks (a) and (b) are equivalent because $\operatorname{det}(L)=\prod_{i=1}^{r}\left\|b_{i}^{*}\right\|$ stays the same.

## Quantifying good/bad basis

The goal of lattice reduction is to:
(a) Increase $\left\|b_{i}^{*}\right\|$ for large $i$, and
(b) Decrease $\left\|b_{i}^{*}\right\|$ for small $i$.

Phrased this way, there is a an obvious way to measure progress:

$$
P:=\sum_{i=1}^{r} i \cdot \log _{2}\left(\left\|b_{i}^{*}\right\|\right)
$$

Tasks (a),(b), improving a basis, can be reformulated as:
■ Moving G.S.-length forward, in other words:

- Increasing $P$.


## Operations on a basis of $L=\mathbb{Z} b_{1}+\cdots+\mathbb{Z} b_{r}$

Notation: Let $\mu_{i j}=\left(b_{i} \cdot b_{j}^{*}\right) /\left(b_{j}^{*} \cdot b_{j}^{*}\right)$ so that

$$
b_{i}=b_{i}^{*}+\sum_{j<i} \mu_{i j} b_{j}^{*} \quad\left(\text { recall : } b_{i} \equiv b_{i}^{*}\right. \text { mod prior vectors) }
$$

LLL performs two types of operations on a basis of $L$ :
(I) Subtract an integer multiple of $b_{j}$ from $b_{i}$ (for some $j<i$ ).
(II) Swap two adjacent vectors $b_{i-1}, b_{i}$.

Deciding which operations to take is based solely on:

- The G.S. lengths $\left\|b_{i}^{*}\right\| \in \mathbb{R}$.

■ The $\mu_{i j} \in \mathbb{R}$ that relate G.S. to actual vectors.
These numbers are typically computed to some error tolerance $\epsilon$.

## Operations on a basis of $L=\mathbb{Z} b_{1}+\cdots+\mathbb{Z} b_{r}$, continued

Operation (I): Subtract $k \cdot b_{j}$ from $b_{i}(j<i$ and $k \in \mathbb{Z})$.
1 No effect on: $b_{1}^{*}, \ldots, b_{r}^{*}$
2 Changes $\mu_{i j}$ by $k$ (also changes $\mu_{i, j^{\prime}}$ for $j^{\prime}<j$ ).
3 After repeated use: $\quad\left|\mu_{i j}\right| \leqslant 0.5+\epsilon$ for all $j<i$.
Operation (II): Swap $b_{i-1}, b_{i}$, but only when (Lovász condition)

$$
p_{i}:=\log _{2} \| \text { new } b_{i}^{*}\left\|-\log _{2}\right\| \text { old } b_{i}^{*} \| \geqslant 0.1
$$

$1 b_{1}^{*}, \ldots, b_{i-2}^{*}$ and $b_{i+1}^{*}, \ldots, b_{r}^{*}$ stay the same.
$2 \log _{2}\left(\left\|b_{i-1}^{*}\right\|\right)$ decreases and $\log _{2}\left(\left\|b_{i}^{*}\right\|\right)$ increases by $p_{i}$
3 Progress counter $P$ increases by $p_{i} \geqslant 0.1$.

## Lattice reduction, the LLL algorithm:

Input: a basis $b_{1}, \ldots, b_{r}$ of a lattice $L$
Output: a good basis $b_{1}, \ldots, b_{r}$
Step 1. Apply operation (I) until all $\left|\mu_{i j}\right| \leqslant 0.5+\epsilon$.
Step 2. If $\exists_{i} p_{i} \geqslant 0.1$ then swap $b_{i-1}, b_{i}$ and return to Step 1 . Otherwise the algorithm ends.

Step 1 has no effect on G.S.-lengths and $P$. It improves the $\mu_{i j}$ and $p_{i}$ 's. A swap increases progress counter

$$
P=\sum i \cdot \log _{2}\left(\left\|b_{i}^{*}\right\|\right)
$$

by $p_{i} \geqslant 0.1$, so

$$
\begin{aligned}
\# \text { calls to Step } 1 & =1+\# \text { swaps } \\
& \leqslant 1+10 \cdot\left(P_{\text {output }}-P_{\text {input }}\right)
\end{aligned}
$$

## Lattice reduction, properties of the output:

LLL stops when every $p_{i}<0.1$. A short computation, using $\left|\mu_{i, i-1}\right| \leqslant 0.5+\epsilon$, shows that

$$
\left\|b_{i-1}^{*}\right\| \leqslant 1.28 \cdot\left\|b_{i}^{*}\right\|
$$

for all $i$. So later G.S.-lengths are not much smaller than earlier ones; the output is a good basis.

## Using LLL to solve (or partially solve!) a problem

LLL solves many problems. Suppose a vector $v$ encodes the solution of a problem, and we construct $b_{1}, \ldots, b_{r}$ with

$$
v \in \mathbb{Z} b_{1}+\cdots+\mathbb{Z} b_{r}
$$

Solving a problem with a single call to LLL: If every vector outside of $\mathbb{Z} v$ is much longer than $v$, then the first vector in the LLL output is $\pm v$. The original LLL paper factors $f \in \mathbb{Z}[x]$ by constructing the coefficient vector $v$ of a factor in this way.

Partial reduction in the combinatorial problem: If $\left\|b_{i}^{*}\right\|>\|v\|$ for all $i \in\{k+1, \ldots, r\}$ then

$$
v \in \mathbb{Z} b_{1}+\cdots+\mathbb{Z} b_{k}
$$

The initial basis is usually bad, i.e. $\left\|b_{r}^{*}\right\|$ is small: We need LLL to make $\left\|b_{r}^{*}\right\|>$ an upper bound for $\|v\|$.

