
Introduction to lattices

Let b1, . . . , br ∈ Rn be linearly independent over R.
Consider the following Z-module ⊂ Rn

L := Zb1 + · · ·+ Zbr .

Such L is called a lattice with basis b1, . . . , br .

Lattice reduction (LLL): Given a “bad” basis of L, compute a
“good” basis of L.

What does this mean? Attempt #1: b1, . . . , br is a “bad basis”
when L has another basis consisting of much shorter vectors.

However: To understand lattice reduction, it does not help to focus
on lengths of vectors. What matters are: Gram-Schmidt lengths.

Gram-Schmidt

L = Zb1 + · · ·+ Zbr

Given b1, . . . , br , the Gram-Schmidt process produces vectors
b∗1, . . . , b

∗
r in Rn (not in L!) with:

b∗i := bi reduced mod Rb1 + · · ·+ Rbi−1

i.e.
b∗1, . . . , b

∗
r are orthogonal

and
b∗1 = b1

and
b∗i ≡ bi mod prior vectors.

Gram-Schmidt, continued

b1, . . . , br : A basis (as Z-module) of L.

b∗1, . . . , b
∗
r : Gram-Schmidt vectors (not a basis of L).

b∗i ≡ bi mod prior vectors

||b∗1||, . . . , ||b∗r || are the Gram-Schmidt lengths and
||b1||, . . . , ||br || are the actual lengths of b1, . . . , br .

G.S. lengths are far more informative than actual lengths, e.g.

min{||v ||, v ∈ L, v 6= 0} > min{||b∗i ||, i = 1 . . . r}.

G.S. lengths tell us immediately if a basis is bad
(actual lengths do not).

Good/bad basis of L

We say that b1, . . . br is a bad basis if ||b∗i || � ||b∗j || for some i > j .

Bad basis = later vector(s) have much smaller G.S. length than
earlier vector(s).

If b1, . . . , br is bad in the G.S. sense, then it is also bad in terms of
actual lengths. We will ignore actual lengths because:

The actual lengths provides no obvious strategy for finding a
better basis, making LLL a mysterious black box.

In contrast, in terms of G.S. lengths the strategy is clear:

(a) Increase ||b∗i || for large i , and
(b) Decrease ||b∗i || for small i .

Tasks (a) and (b) are equivalent because det(L) =
∏r

i=1 ||b∗i ||
stays the same.

Quantifying good/bad basis

The goal of lattice reduction is to:
(a) Increase ||b∗i || for large i , and
(b) Decrease ||b∗i || for small i .

Phrased this way, there is a an obvious way to measure progress:

P :=
r∑

i=1

i · log2(||b∗i ||)

Tasks (a),(b), improving a basis, can be reformulated as:

Moving G.S.-length forward, in other words:

Increasing P.

Operations on a basis of L = Zb1 + · · ·+ Zbr

Notation: Let µij = (bi · b∗j)/(b∗j · b∗j) so that

bi = b∗i +
∑
j<i

µij b
∗
j (recall : bi ≡ b∗i mod prior vectors)

LLL performs two types of operations on a basis of L:

(I) Subtract an integer multiple of bj from bi (for some j < i).

(II) Swap two adjacent vectors bi−1, bi .

Deciding which operations to take is based solely on:

The G.S. lengths ||b∗i || ∈ R.

The µij ∈ R that relate G.S. to actual vectors.

These numbers are typically computed to some error tolerance ε.

Operations on a basis of L = Zb1 + · · ·+ Zbr , continued

Operation (I): Subtract k · bj from bi (j < i and k ∈ Z).

1 No effect on: b∗1, . . . , b
∗
r

2 Changes µij by k (also changes µi ,j ′ for j ′ < j).

3 After repeated use: |µij | 6 0.5 + ε for all j < i .

Operation (II): Swap bi−1, bi , but only when (Lovász condition)

pi := log2 ||new b∗i || − log2 ||old b∗i || > 0.1

1 b∗1, . . . , b
∗
i−2 and b∗i+1, . . . , b

∗
r stay the same.

2 log2(||b∗i−1||) decreases and log2(||b∗i ||) increases by pi

3 Progress counter P increases by pi > 0.1.

Lattice reduction, the LLL algorithm:

Input: a basis b1, . . . , br of a lattice L

Output: a good basis b1, . . . , br

Step 1. Apply operation (I) until all |µij | 6 0.5 + ε.
Step 2. If ∃i pi > 0.1 then swap bi−1, bi and return to Step 1.

Otherwise the algorithm ends.

Step 1 has no effect on G.S.-lengths and P. It improves the µij
and pi ’s. A swap increases progress counter

P =
∑

i · log2(||b∗i ||)

by pi > 0.1, so

#calls to Step 1 = 1 + #swaps

6 1 + 10 · (Poutput − Pinput).

Lattice reduction, properties of the output:

LLL stops when every pi < 0.1. A short computation, using
|µi ,i−1| 6 0.5 + ε, shows that

||b∗i−1|| 6 1.28 · ||b∗i ||

for all i . So later G.S.-lengths are not much smaller than earlier
ones; the output is a good basis.

Using LLL to solve (or partially solve!) a problem

LLL solves many problems. Suppose a vector v encodes the
solution of a problem, and we construct b1, . . . , br with

v ∈ Zb1 + · · ·+ Zbr

Solving a problem with a single call to LLL: If every vector
outside of Zv is much longer than v , then the first vector in the
LLL output is ±v . The original LLL paper factors f ∈ Z[x] by
constructing the coefficient vector v of a factor in this way.

Partial reduction in the combinatorial problem: If ||b∗i || > ||v ||
for all i ∈ {k + 1, . . . , r} then

v ∈ Zb1 + · · ·+ Zbk .

The initial basis is usually bad, i.e. ||b∗r || is small: We need LLL to
make ||b∗r || > an upper bound for ||v ||.

