Introduction to lattices

Let by,..., b, € R" be linearly independent over R.
Consider the following Z-module C R"

L:=7by+ -+ 7Zb,.
Such L is called a /attice with basis by, ..., b,.

Lattice reduction (LLL): Given a "bad" basis of L, compute a
“good” basis of L.

What does this mean? Attempt #1: by,..., b, is a “bad basis”
when L has another basis consisting of much shorter vectors.

However: To understand lattice reduction, it does not help to focus
on lengths of vectors. What matters are: Gram-Schmidt lengths.

Gram-Schmidt

L=7b +-+17b,

Given by, ..., b,, the Gram-Schmidt process produces vectors
by,...,bf in R" (not in L!) with:

b := b; reduced mod Rby +---+Rbj_;

ie.

bi,..., by are orthogonal
and

bl = by
and

by = b; mod prior vectors.

Gram-Schmidt, continued

bi,...,br: A basis (as Z-module) of L.
by,...,bf: Gram-Schmidt vectors (not a basis of L).

b = b; mod prior vectors

[|b71l, ... ||bf|| are the Gram-Schmidt lengths and
[|b1]l, -, ||br|| are the actual lengths of by, ..., b,.

G.S. lengths are far more informative than actual lengths, e.g.

min{||v||, ve€Lv#0} > min{||b}||, i=1...r}.

G.S. lengths tell us immediately if a basis is bad
(actual lengths do not).

Good/bad basis of L

We say that br,... b, is a bad basis if ||b} || < ||b}|| for some i > j.

Bad basis = later vector(s) have much smaller G.S. length than
earlier vector(s).

If by,..., b, is bad in the G.S. sense, then it is also bad in terms of
actual lengths. We will ignore actual lengths because:

m The actual lengths provides no obvious strategy for finding a
better basis, making LLL a mysterious black box.

m In contrast, in terms of G.S. lengths the strategy is clear:

(a) Increase ||b?|| for large i, and
(b) Decrease ||b¥|| for small i.

Tasks (a) and (b) are equivalent because det(L) = [/, ||bf]|
stays the same.

Quantifying good/bad basis

The goal of lattice reduction is to:
(a) Increase ||b}|| for large i, and
(b) Decrease ||b¥|| for small i.

Phrased this way, there is a an obvious way to measure progress:

P = Zi‘|0g2(||b?’|)

i=1

Tasks (a),(b), improving a basis, can be reformulated as:
m Moving G.S.-length forward, in other words:

m Increasing P.

Operations on a basis of L = Zb, + - - - + Zb,

Notation: Let p; = (b; - b})/(bj - b}) so that

bi = b} + Z fij by (recall : b; = b mod prior vectors)
J<i
LLL performs two types of operations on a basis of L:
(I) Subtract an integer multiple of b; from b; (for some j < /).

(I1) Swap two adjacent vectors b;_1, b;.

Deciding which operations to take is based solely on:
m The G.S. lengths ||b}|| € R.
m The p;; € R that relate G.S. to actual vectors.

These numbers are typically computed to some error tolerance e.

Operations on a basis of L = Zb;y + - - - + Zb,, continued

Operation (l): Subtract k- b; from b; (j <iand k € Z).
No effect on: bj,..., b}
Changes pjj by k (also changes p; jr for j' < j).
After repeated use: |pjj| < 0.5+¢€ forall j <.

Operation (I1): Swap b;_1, b;, but only when (Lovész condition)
pi = log,||new b;|| — log, ||old b7|| > 0.1

bi,...,bi 5 and b} ..., by stay the same.
log,(||b}_;||) decreases and log,(||b}||) increases by p;
Progress counter P increases by p; > 0.1.

Lattice reduction, the LLL algorithm:

Input: a basis by, ..., b, of a lattice L
Output: a good basis by, ..., b,

Step 1. Apply operation (1) until all |p;;| < 0.5+ €.
Step 2. If 3; p; > 0.1 then swap b;_1, b; and return to Step 1.
Otherwise the algorithm ends.

Step 1 has no effect on G.S.-lengths and P. It improves the 1
and p;'s. A swap increases progress counter

P =" "i-logy(|b;ll)
by p; > 0.1, so

#calls to Step 1 = 1+ #swaps
g 1 + 10 - (Poutput - Pinput)-

Lattice reduction, properties of the output:

LLL stops when every p; < 0.1. A short computation, using
|ieii—1] < 0.5+ €, shows that

16| < 1.28 - [[b7]]

for all i. So later G.S.-lengths are not much smaller than earlier
ones; the output is a good basis.

Using LLL to solve (or partially solve!) a problem

LLL solves many problems. Suppose a vector v encodes the
solution of a problem, and we construct by, ..., b, with

veEZLb+---+7Zb,

Solving a problem with a single call to LLL: If every vector
outside of Zv is much longer than v, then the first vector in the
LLL output is +v. The original LLL paper factors f € Z[x] by
constructing the coefficient vector v of a factor in this way.

Partial reduction in the combinatorial problem: If ||b7|| > ||v||
forallie {k+1,...,r} then

v EZLby+ -+ Zby.

The initial basis is usually bad, i.e. ||b}|| is small: We need LLL to
make ||bf|| > an upper bound for ||v||.

