Let $b_1, \ldots, b_r \in \mathbb{R}^n$ be linearly independent over \mathbb{R} . Consider the following \mathbb{Z} -module $\subset \mathbb{R}^n$

$$L:=\mathbb{Z}b_1+\cdots+\mathbb{Z}b_r.$$

Such L is called a *lattice* with basis b_1, \ldots, b_r .

Lattice reduction (LLL): Given a "bad" basis of *L*, compute a "good" basis of *L*.

What does this mean? Attempt #1: b_1, \ldots, b_r is a "bad basis" when *L* has another basis consisting of much shorter vectors.

However: To understand lattice reduction, it does not help to focus on lengths of vectors. What matters are: *Gram-Schmidt lengths*.

Gram-Schmidt

$$L = \mathbb{Z}b_1 + \cdots + \mathbb{Z}b_r$$

Given b_1, \ldots, b_r , the Gram-Schmidt process produces vectors b_1^*, \ldots, b_r^* in \mathbb{R}^n (not in *L*!) with:

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

$$b_i^* := b_i$$
 reduced mod $\mathbb{R}b_1 + \cdots + \mathbb{R}b_{i-1}$

i.e.

$$b_1^*,\ldots,b_r^*$$
 are orthogonal

and

$$b_1^*=b_1$$

and $b_i^*\equiv b_i \mod ext{prior vectors.}$

Gram-Schmidt, continued

 b_1, \ldots, b_r : A basis (as \mathbb{Z} -module) of L. b_1^*, \ldots, b_r^* : Gram-Schmidt vectors (not a basis of L). $b_i^* \equiv b_i \mod \text{prior vectors}$

 $||b_1^*||, \ldots, ||b_r^*||$ are the *Gram-Schmidt lengths* and $||b_1||, \ldots, ||b_r||$ are the *actual lengths* of b_1, \ldots, b_r .

G.S. lengths are far more informative than actual lengths, e.g.

 $\min\{||v||, v \in L, v \neq 0\} \ge \min\{||b_i^*||, i = 1 \dots r\}.$

G.S. lengths tell us immediately if a basis is bad (actual lengths do not).

We say that $b_1, \ldots b_r$ is a *bad basis* if $||b_i^*|| \ll ||b_i^*||$ for some i > j.

Bad basis = later vector(s) have much smaller G.S. length than earlier vector(s).

If b_1, \ldots, b_r is bad in the G.S. sense, then it is also bad in terms of actual lengths. We will ignore actual lengths because:

- The actual lengths provides no obvious strategy for finding a better basis, making LLL a mysterious black box.
- In contrast, in terms of G.S. lengths the strategy is clear:

(a) Increase $||b_i^*||$ for large *i*, and (b) Decrease $||b_i^*||$ for small *i*.

Tasks (a) and (b) are equivalent because $det(L) = \prod_{i=1}^{r} ||b_i^*||$ stays the same.

The goal of lattice reduction is to: (a) Increase $||b_i^*||$ for large *i*, and (b) Decrease $||b_i^*||$ for small *i*.

Phrased this way, there is a an obvious way to measure progress:

$$P := \sum_{i=1}^r i \cdot \log_2(||b_i^*||)$$

Tasks (a),(b), improving a basis, can be reformulated as:

- Moving G.S.-length forward, in other words:
- Increasing P.

Notation: Let $\mu_{ij} = (b_i \cdot b_j^*)/(b_j^* \cdot b_j^*)$ so that

$$b_i = b_i^* + \sum_{j < i} \mu_{ij} \, b_j^*$$
 (recall : $b_i \equiv b_i^* \mod \text{prior vectors}$)

LLL performs two types of operations on a basis of L:

(I) Subtract an integer multiple of b_j from b_i (for some j < i).
(II) Swap two adjacent vectors b_{i-1}, b_i.

Deciding which operations to take is based solely on:

The G.S. lengths $||b_i^*|| \in \mathbb{R}$.

• The $\mu_{ij} \in \mathbb{R}$ that relate G.S. to actual vectors.

These numbers are typically computed to some error tolerance ϵ .

Operations on a basis of $L = \mathbb{Z}b_1 + \cdots + \mathbb{Z}b_r$, continued

Operation (I): Subtract $k \cdot b_j$ from b_i $(j < i \text{ and } k \in \mathbb{Z})$.

- **1** No effect on: b_1^*, \ldots, b_r^*
- **2** Changes μ_{ij} by k (also changes $\mu_{i,j'}$ for j' < j).
- 3 After repeated use: $|\mu_{ij}| \leq 0.5 + \epsilon$ for all j < i.

Operation (II): Swap b_{i-1}, b_i , but only when (Lovász condition)

$$p_i := \log_2 ||\text{new } b_i^*|| - \log_2 ||\text{old } b_i^*|| \ge 0.1$$

- **1** b_1^*, \ldots, b_{i-2}^* and b_{i+1}^*, \ldots, b_r^* stay the same.
- **2** $\log_2(||b_{i-1}^*||)$ decreases and $\log_2(||b_i^*||)$ increases by p_i
- **3 Progress counter** *P* increases by $p_i \ge 0.1$.

Lattice reduction, the LLL algorithm:

Input: a basis b_1, \ldots, b_r of a lattice L

Output: a good basis b_1, \ldots, b_r

Step 1. Apply operation (I) until all $|\mu_{ij}| \leq 0.5 + \epsilon$. Step 2. If $\exists_i \ p_i \geq 0.1$ then swap b_{i-1}, b_i and return to Step 1. Otherwise the algorithm ends.

Step 1 has no effect on G.S.-lengths and *P*. It improves the μ_{ij} and p_i 's. A swap increases progress counter

$$P = \sum i \cdot \log_2(||b_i^*||)$$

by $p_i \ge 0.1$, so

$$\begin{array}{rcl} \# \mathrm{calls \ to \ Step \ } 1 & = & 1 + \# \mathrm{swaps} \\ & \leqslant & 1 + 10 \cdot (P_\mathrm{output} - P_\mathrm{input}). \end{array}$$

LLL stops when every $p_i < 0.1$. A short computation, using $|\mu_{i,i-1}| \leq 0.5 + \epsilon$, shows that

 $||b_{i-1}^*|| \leq 1.28 \cdot ||b_i^*||$

for all *i*. So later G.S.-lengths are not much smaller than earlier ones; the output is a *good basis*.

Using LLL to solve (or partially solve!) a problem

LLL solves many problems. Suppose a vector v encodes the solution of a problem, and we construct b_1, \ldots, b_r with

 $v \in \mathbb{Z}b_1 + \cdots + \mathbb{Z}b_r$

Solving a problem with a single call to LLL: If every vector outside of $\mathbb{Z}v$ is much longer than v, then the first vector in the LLL output is $\pm v$. The original LLL paper factors $f \in \mathbb{Z}[x]$ by constructing the coefficient vector v of a factor in this way.

Partial reduction in the combinatorial problem: If $||b_i^*|| > ||v||$ for all $i \in \{k + 1, ..., r\}$ then

$$v \in \mathbb{Z}b_1 + \cdots + \mathbb{Z}b_k.$$

The initial basis is usually bad, i.e. $||b_r^*||$ is small: We need LLL to make $||b_r^*|| > an$ upper bound for ||v||.