Intro Advanced Math, test 1.

Your name:

1. Let \(A, B \) be sets and suppose that \(A - B = B \). Then show that \(A \) and \(B \) are both empty.

 Answer: To prove \(B = \emptyset \) (i.e. \(\forall x \ x \notin B \)) we will show that \(x \in B \) leads to a contradiction.
 Assume \(x \in B \). Then \(x \in A - B \) since \(A - B = B \), so \(x \in A \) and \(x \notin B \), contradicting the assumption.
 Now that we know \(B = \emptyset \) we find \(A = A - \emptyset = A - B = B = \emptyset \).

2. (a) Let \(f \) be a function from \(A \) to \(B \). Write down the contrapositive of this statement:

 \[p: \quad f(x) = f(y) \implies x = y \]
 Answer: \(x \neq y \implies f(x) \neq f(y) \).

 (b) Write down the converse of statement \(p \).
 Answer: \(x = y \implies f(x) = f(y) \).

 (c) Is there a statement among your answers for (a),(b) that is true for every function?
 Yes, (b) says that \(f \) is well-defined. That is true for every function.

 (d) Now compute the negation of this statement:
 \[q: \quad \text{There exists } b \in B \text{ such that } b \neq f(a) \text{ for every } a \in A \]
 Answer: \(\neg q \) says \(\forall b \in B \exists a \in A \ b \neq f(a) \).

 (e) Can you express your answer for \(\neg q \) in terms of one of the phrases/definitions you memorized?
 \(\neg q \) says \(f \) is onto.

 (f) Let \(L \) be a chain, let \(S \) be a subset of \(L \), and consider this statement:
 \[r: \quad \text{For every } x \text{ in } S \text{ there exists } y \text{ in } S \text{ with } y > x \]
 Compute the negation of \(r \) (Recall that in a chain, the negation of \(y > x \) is simply \(y \leq x \)).
 Answer: \(\neg r \) says \(\exists x \in S \forall y \in S \ y \leq x \).

 (g) Can you express your answer for \(\neg r \) in terms of one of the phrases we have learned?
 \(\neg r \) says: \(\exists x \in S \) such that \(x \) is an upper bound for \(S \).
 An upper bound for \(S \) that happens to be in \(S \) is called a top element.
 So \(\neg r \) says that \(S \) has a top element.

3. (a) Give the definition of injective (a.k.a. one to one): \(f: A \to B \) is injective when:

 \(f(a_1) = f(a_2) \implies a_1 = a_2 \).

 Answer: (for all \(a_1, a_2 \in A \)): \(f(a_1) = f(a_2) \implies a_1 = a_2 \).
(b) Give the definition of surjective (a.k.a. onto): \(f : A \to B \) is surjective when:

Answer: \(\forall b \in B \exists a \in A \ f(a) = b \).

(c) Suppose that \(f : A \to B \) and \(g : B \to A \) and (1): \(\forall a \in A \ g(f(a)) = a \).

i. Prove that \(f \) is injective.

Answer: Assume \(f(a_1) = f(a_2) \). To prove: \(a_1 = a_2 \).
Apply \(g \) to the assumed statement gives: \(g(f(a_1)) = g(f(a_2)) \).
Applying (1) to the last equation gives \(a_1 = a_2 \).

ii. Prove that \(g \) is surjective.

Answer: \(g : B \to A \) so we have to prove that if \(a \in A \) then there exists \(b \in B \) with \(g(b) = a \).
Proof: Take \(b := f(a) \) (then \(g(b) = g(f(a)) \) equals \(a \) by (1)).

iii. If \(f \) is surjective then show that \(g \) is injective.

Assume \(g(b_1) = g(b_2) \), to prove: \(b_1 = b_2 \).
Since \(f \) is surjective, there are \(a_1, a_2 \in A \) with \(b_1 = f(a_1) \) and \(b_2 = f(a_2) \). Applying \(g \) we get \(g(b_1) = g(f(a_1)) = a_1 \) (last equation used (1)). Likewise \(g(b_2) = a_2 \). But we assumed \(g(b_1) = g(b_2) \) and so \(a_1 = a_2 \). Then \(b_1 = f(a_1) = f(a_2) = b_2 \).

4. (a) Let \(x \) and \(y \) be real numbers: Consider the statement

\[
(\forall \epsilon > 0 \ x < y + \epsilon) \implies x \leq y
\]

Write down the contrapositive of this statement and simplify your answer so that you have no negation symbol in front of a quantifier.

Answer: \(x > y \implies (\exists \epsilon > 0 \ x \geq y + \epsilon) \).

(b) Can you prove the statement?

Answer: Assume \(x > y \).
Take \(\epsilon := x - y \) (then \(\epsilon > 0 \) and \(x \geq y + \epsilon \)).

5. Bonus or take-home question: Suppose that \(A, B, I \) are sets, and \(C_i \) is a set for every \(i \in I \). Suppose that \(C_i \subseteq B \) for every \(i \in I \). Show that

\[
A \setminus B \subseteq \bigcap_{i \in I} A \setminus C_i
\]

(Note: \(A \setminus B \) is the same as \(A \setminus B \))