
Test 2, Intro Advanced Math, Oct 18 2019.
If the test is too long for the allotted time, then circle one of Ex 4 or Ex 5 and
turn that into a take-home question.

1. For each, simplify the cardinality to one of: 0, 1, 2, . . ., ℵ0, c, 2c, 22
c

, . . .
No explanation is needed for (a)–(e). Do explain your answers for (f),(g).

(a) {3, 3, 3}
(b) R \Q
(c) N×Q
(d) P (Q)

(e) RR

(f) RN

(g) Does there exist a bijection between RN and R?

2. Give the definitions:

(a) A relation R on a set S is an equivalence relation when:

i.

ii.

iii.

(b) A function f : A→ B is onto (surjective) when:

3. Suppose that f : P (A)→ B is injective.
Prove that there is no injective function g : B → A.

4. Suppose that Aq is a set for every q ∈ Q.
Suppose that for every r ∈ R there is some q ∈ Q for which r ∈ Aq.
Must there be some q ∈ Q for which Aq is uncountable?
Why or why not?

5. Let C be a set, let A be a subset of C, and let B = C \A. Suppose there
is an injective function from B to A but not from C to A. Prove that C
must be a finite set.



List of facts on cardinal numbers, shortened version.

1. card(A) = card(B) means ∃f : A→ B with f bijection.

2. card(A) ≤ card(B) means ∃f : A→ B with f one-to-one.

3. ℵ0 is short notation for card(N∗).

4. c is short notation for card(R).

5. The set A is countably infinite when: card(A) = ℵ0.
By item 1 this means: ∃f : N∗ → A with f bijection. Note, in that case
A = f(N∗) = f({1, 2, . . .}) = {f(1), f(2), . . .} and this means that all
elements of A fit into one sequence f(1), f(2), . . ..

6. Notation: x < y is short for: x ≤ y ∧ x 6= y.

7. card(A) < card(P (A)).

8. Item 7 implies that not all infinite sets have the same cardinality!
The cardinal number card(N∗) = ℵ0, is NOT the largest possible car-
dinality despite the fact that it is infinite! After all, P (N∗) has larger
cardinality by item 7. And P (P (N∗)) has larger cardinality still!

9. If f : A→ B is onto then card(B) ≤ card(A).

10. A is countable when either: A is countably infinite (defined in item 5) or
A is finite.

11. A is countable when card(A) ≤ ℵ0.

12. A subset of a countable set is again countable.

13. If A ⊆ B then card(A) ≤ card(B).

14. The ordering ≤ on cardinal numbers is a partial ordering.
In particular: whenever d ≤ e and e ≤ d we may conclude d = e.
The proof is not easy! (Schroeder-Bernstein theorem on p 88–89).

15. The ordering ≤ on cardinal numbers is a total ordering. So given any two
cardinals d, e we have d ≤ e or d ≥ e. This means that one of these things
must be true: d < e or d = e or d > e.

16. Set A is uncountable when card(A) 6≤ ℵ0. Using item 15 we can reformu-
late this by saying: A is uncountable when card(A) > ℵ0.

17. Any infinite set contains a countably infinite subset. (note: That an
uncountable set has a countably infinite subset follows from item 16).

18. Z and Q are countable.

19. If you have countably many sets, and if each of these sets is countable,
then their union is also countable.



20. R is uncountable. c = card(R) = card(P (N∗)).

21. If d = card(D) and e = card(E) then d + e is the cardinality of D
⋃

E if
we assume that D

⋂
E = ∅. Likewise, d · e is the cardinality of D × E.

de is the cardinality of DE where DE = {all functions from E to D}.

22. If d, e are cardinal numbers, and if at least one of them is infinite, then
d + e = max(d, e).

If d 6= 0 and e 6= 0 and at least one of them is infinite, then d · e equals
max(d, e) as well. So for non-zero cardinals with at least one infinite, the
operations +, ·,max are the same!

23. There is a bijection between P (A) and {0, 1}A, and hence card(P (A)) =
card({0, 1}A) = card({0, 1})card(A) = 2card(A).

24. c = card(R) = card(P (N∗)) = card({0, 1}N∗
) = 2card(N

∗) = 2ℵ0 .

25. (d1d2)e = de1d
e
2, de1+e2 = de1de2 , (de)f = def

26. If you have d sets, and each of these sets has cardinality e, and if A is
the union of all those sets, then card(A) ≤ de (if the d sets are disjoint,
then you may replace the ≤ by =). Now if d or e is infinite, and both are
non-zero, then we can also replace de by max(d,e), see item 22.

27. So far we have encountered these increasing cardinals:

0, 1, 2, 3, . . . ℵ0, c = 2ℵ0 , 2c, 22
c

, . . .

and we can wonder if there are any cardinals in between. Specifically, the
continuum hypothesis asks if there is a cardinal d with ℵ0 < d < c.

From the axioms of set theory (= the only statements mathematicians
accept without a proof) it is impossible to prove or disprove this.



Writing Proofs.
1. Direct proof for p =⇒ q.

Assume: p. To prove: q.

2. Proving p =⇒ q by contrapositive.
Assume: ¬q. To prove: ¬p.

3. Proving S by contradiction.
Assume: ¬S. To prove: a contradiction.

4. Proving p =⇒ q by contradiction.
Assume: p and ¬q. To prove: a contradiction.

5. Direct proof for a ∀x∈AP (x) statement.

To ensure you prove P (x) for all (rather than for some) x in A, do this:

Start your proof with: Let x ∈ A. To prove: P (x).

6. Direct proof for ∃x∈AP (x) statement.
Take x := [write down an expression that is in A, and satisfies P (x)].

7. Proving ∀x∈AP (x) by contradiction.
Assume: x ∈ A and ¬P (x). To prove: a contradiction.

8. Proving ∃x∈AP (x) by contradiction.
Assume: ¬P (x) for every x ∈ A. To prove: a contradiction.

9. Proving S by cases.
Suppose for example a statement p can help to prove S. Write two proofs:
Case 1: Assume p. To prove: S.
Case 2: Assume ¬p. To prove S.

10. Proving p ∧ q
Write two separate proofs: To prove: p. To prove: q.

11. Proving p⇐⇒ q
Write two proofs. To prove: p =⇒ q To prove: q =⇒ p.

12. Proving p ∨ q
Method (1): Assume ¬p. To prove: q.
Method (2): Assume ¬q. To prove: p.
Method (3): Assume ¬p and ¬q. To prove: a contradiction.

13. Using p ∨ q to prove another statement r.
Write two proofs:
Assume p. To prove r.
Assume q. To prove r.

14. How to use a for-all statement ∀x∈AP (x).
You need to produce an element of A, then use P for that element.

15. If you want to use an exists statement like ∃x∈AP (x) to prove another
statement, then you may not choose x. All you know is x ∈ A and P (x).


