Test 2, Intro Advanced Math, Oct 18 2019.

If the test is too long for the allotted time, then circle one of Ex 4 or Ex 5 and turn that into a take-home question.

- 1. For each, simplify the cardinality to one of: $0, 1, 2, ..., \aleph_0, c, 2^c, 2^{2^c}, ...$ No explanation is needed for (a)–(e). Do explain your answers for (f),(g).
 - (a) $\{3, 3, 3\}$
 - (b) $\mathbb{R} \setminus \mathbb{Q}$
 - (c) $\mathbb{N} \times \mathbb{Q}$
 - (d) $P(\mathbb{Q})$
 - (e) $\mathbb{R}^{\mathbb{R}}$
 - (f) $\mathbb{R}^{\mathbb{N}}$
 - (g) Does there exist a bijection between $\mathbb{R}^{\mathbb{N}}$ and \mathbb{R} ?

2. Give the definitions:

- (a) A relation R on a set S is an equivalence relation when:
 i.
 ii.
 iii.
- (b) A function $f : A \to B$ is onto (surjective) when:
- 3. Suppose that $f: P(A) \to B$ is injective. Prove that there is no injective function $g: B \to A$.
- 4. Suppose that A_q is a set for every $q \in \mathbb{Q}$. Suppose that for every $r \in \mathbb{R}$ there is some $q \in \mathbb{Q}$ for which $r \in A_q$. Must there be some $q \in \mathbb{Q}$ for which A_q is uncountable? Why or why not?
- 5. Let C be a set, let A be a subset of C, and let $B = C \setminus A$. Suppose there is an injective function from B to A but not from C to A. Prove that C must be a finite set.

List of facts on cardinal numbers, shortened version.

- 1. $\operatorname{card}(A) = \operatorname{card}(B)$ means $\exists f : A \to B$ with f bijection.
- 2. $\operatorname{card}(A) \leq \operatorname{card}(B)$ means $\exists f : A \to B$ with f one-to-one.
- 3. \aleph_0 is short notation for card(\mathbb{N}^*).
- 4. c is short notation for $card(\mathbb{R})$.
- 5. The set A is countably infinite when: $\operatorname{card}(A) = \aleph_0$. By item 1 this means: $\exists f : \mathbb{N}^* \to A$ with f bijection. Note, in that case $A = f(\mathbb{N}^*) = f(\{1, 2, \ldots\}) = \{f(1), f(2), \ldots\}$ and this means that all elements of A fit into one sequence $f(1), f(2), \ldots$
- 6. Notation: x < y is short for: $x \le y \land x \ne y$.
- 7. $\operatorname{card}(A) < \operatorname{card}(P(A)).$
- 8. Item 7 implies that not all infinite sets have the same cardinality! The cardinal number $\operatorname{card}(\mathbb{N}^*) = \aleph_0$, is NOT the largest possible cardinality despite the fact that it is infinite! After all, $P(\mathbb{N}^*)$ has larger cardinality by item 7. And $P(P(\mathbb{N}^*))$ has larger cardinality still!
- 9. If $f: A \to B$ is onto then $card(B) \leq card(A)$.
- 10. A is *countable* when either: A is countably infinite (defined in item 5) or A is finite.
- 11. A is countable when $\operatorname{card}(A) \leq \aleph_0$.
- 12. A subset of a countable set is again countable.
- 13. If $A \subseteq B$ then $\operatorname{card}(A) \leq \operatorname{card}(B)$.
- 14. The ordering \leq on cardinal numbers is a *partial ordering*. In particular: whenever $d \leq e$ and $e \leq d$ we may conclude d = e. The proof is not easy! (Schroeder-Bernstein theorem on p 88–89).
- 15. The ordering \leq on cardinal numbers is a *total ordering*. So given any two cardinals d, e we have $d \leq e$ or $d \geq e$. This means that one of these things must be true: d < e or d = e or d > e.
- 16. Set A is uncountable when $\operatorname{card}(A) \not\leq \aleph_0$. Using item 15 we can reformulate this by saying: A is uncountable when $\operatorname{card}(A) > \aleph_0$.
- 17. Any infinite set contains a countably infinite subset. (note: That an uncountable set has a countably infinite subset follows from item 16).
- 18. \mathbb{Z} and \mathbb{Q} are countable.
- 19. If you have countably many sets, and if each of these sets is countable, then their union is also countable.

- 20. \mathbb{R} is uncountable. $c = \operatorname{card}(\mathbb{R}) = \operatorname{card}(P(\mathbb{N}^*))$.
- 21. If $d = \operatorname{card}(D)$ and $e = \operatorname{card}(E)$ then d + e is the cardinality of $D \bigcup E$ if we assume that $D \bigcap E = \emptyset$. Likewise, $d \cdot e$ is the cardinality of $D \times E$. d^e is the cardinality of D^E where $D^E = \{\text{all functions from } E \text{ to } D\}$.
- 22. If d, e are cardinal numbers, and if at least one of them is infinite, then $d + e = \max(d, e)$.

If $d \neq 0$ and $e \neq 0$ and at least one of them is infinite, then $d \cdot e$ equals $\max(d, e)$ as well. So for non-zero cardinals with at least one infinite, the operations $+, \cdot, \max$ are the same!

- 23. There is a bijection between P(A) and $\{0,1\}^A$, and hence $\operatorname{card}(P(A)) = \operatorname{card}(\{0,1\}^A) = \operatorname{card}(\{0,1\})^{\operatorname{card}(A)} = 2^{\operatorname{card}(A)}$.
- 24. $c = \operatorname{card}(\mathbb{R}) = \operatorname{card}(P(\mathbb{N}^*)) = \operatorname{card}(\{0,1\}^{\mathbb{N}^*}) = 2^{\operatorname{card}(\mathbb{N}^*)} = 2^{\aleph_0}.$
- 25. $(d_1d_2)^e = d_1^e d_2^e, \quad d^{e_1+e_2} = d^{e_1} d^{e_2}, \quad (d^e)^f = d^{e_f}$
- 26. If you have d sets, and each of these sets has cardinality e, and if A is the union of all those sets, then $\operatorname{card}(A) \leq de$ (if the d sets are disjoint, then you may replace the \leq by =). Now if d or e is infinite, and both are non-zero, then we can also replace de by $\max(d,e)$, see item 22.
- 27. So far we have encountered these increasing cardinals:

0, 1, 2, 3, ... \aleph_0 , $c = 2^{\aleph_0}$, 2^c , 2^{2^c} , ...

and we can wonder if there are any cardinals in between. Specifically, the *continuum hypothesis* asks if there is a cardinal d with $\aleph_0 < d < c$.

From the axioms of set theory (= the only statements mathematicians accept without a proof) it is impossible to prove or disprove this.

Writing Proofs.

- 1. Direct proof for $p \Longrightarrow q$. Assume: p. To prove: q.
- 2. Proving $p \Longrightarrow q$ by contrapositive. Assume: $\neg q$. To prove: $\neg p$.
- 3. Proving S by contradiction. Assume: $\neg S$. To prove: a contradiction.
- 4. Proving $p \Longrightarrow q$ by contradiction. Assume: p and $\neg q$. To prove: a contradiction.
- 5. Direct proof for a $\forall_{x \in A} P(x)$ statement. To ensure you prove P(x) for all (rather than for some) x in A, do this: Start your proof with: Let $x \in A$. To prove: P(x).
- 6. Direct proof for $\exists_{x \in A} P(x)$ statement. Take x := [write down an expression that is in A, and satisfies P(x)].
- 7. Proving $\forall_{x \in A} P(x)$ by contradiction. Assume: $x \in A$ and $\neg P(x)$. To prove: a contradiction.
- 8. Proving $\exists_{x \in A} P(x)$ by contradiction. Assume: $\neg P(x)$ for every $x \in A$. To prove: a contradiction.
- 9. Proving S by cases.
 Suppose for example a statement p can help to prove S. Write two proofs: Case 1: Assume p. To prove: S.
 Case 2: Assume ¬p. To prove S.
- 10. **Proving** $p \land q$ Write two separate proofs: To prove: p. To prove: q.
- 11. Proving $p \iff q$ Write two proofs. To prove: $p \Longrightarrow q$ To prove: $q \Longrightarrow p$.
- 12. Proving p ∨ q
 Method (1): Assume ¬p. To prove: q.
 Method (2): Assume ¬q. To prove: p.
 Method (3): Assume ¬p and ¬q. To prove: a contradiction.
- 13. Using p∨q to prove another statement r. Write two proofs: Assume p. To prove r. Assume q. To prove r.
- 14. How to use a for-all statement $\forall_{x \in A} P(x)$. You need to produce an element of A, then use P for that element.
- 15. If you want to use an exists statement like $\exists_{x \in A} P(x)$ to prove another statement, then you may not choose x. All you know is $x \in A$ and P(x).