Test 2, Intro Advanced Math, Oct 182019.

If the test is too long for the allotted time, then circle one of Ex 4 or Ex 5 and turn that into a take-home question.

1. For each, simplify the cardinality to one of: $0,1,2, \ldots, \aleph_{0}, c, 2^{c}, 2^{2^{c}}, \ldots$ No explanation is needed for (a)-(e). Do explain your answers for (f), (g).
(a) $\{3,3,3\}$
(b) $\mathbb{R} \backslash \mathbb{Q}$
(c) $\mathbb{N} \times \mathbb{Q}$
(d) $P(\mathbb{Q})$
(e) $\mathbb{R}^{\mathbb{R}}$
(f) $\mathbb{R}^{\mathbb{N}}$
(g) Does there exist a bijection between $\mathbb{R}^{\mathbb{N}}$ and \mathbb{R} ?
2. Give the definitions:
(a) A relation R on a set S is an equivalence relation when:
i.
ii.
iii.
(b) A function $f: A \rightarrow B$ is onto (surjective) when:
3. Suppose that $f: P(A) \rightarrow B$ is injective.

Prove that there is no injective function $g: B \rightarrow A$.
4. Suppose that A_{q} is a set for every $q \in \mathbb{Q}$.

Suppose that for every $r \in \mathbb{R}$ there is some $q \in \mathbb{Q}$ for which $r \in A_{q}$.
Must there be some $q \in \mathbb{Q}$ for which A_{q} is uncountable?
Why or why not?
5. Let C be a set, let A be a subset of C, and let $B=C \backslash A$. Suppose there is an injective function from B to A but not from C to A. Prove that C must be a finite set.

List of facts on cardinal numbers, shortened version.

1. $\operatorname{card}(A)=\operatorname{card}(B)$ means $\exists f: A \rightarrow B$ with f bijection.
2. $\operatorname{card}(A) \leq \operatorname{card}(B)$ means $\exists f: A \rightarrow B$ with f one-to-one.
3. \aleph_{0} is short notation for $\operatorname{card}\left(\mathbb{N}^{*}\right)$.
4. c is short notation for $\operatorname{card}(\mathbb{R})$.
5. The set A is countably infinite when: $\operatorname{card}(A)=\aleph_{0}$.

By item 1 this means: $\exists f: \mathbb{N}^{*} \rightarrow A$ with f bijection. Note, in that case $A=f\left(\mathbb{N}^{*}\right)=f(\{1,2, \ldots\})=\{f(1), f(2), \ldots\}$ and this means that all elements of A fit into one sequence $f(1), f(2), \ldots$.
6. Notation: $x<y$ is short for: $x \leq y \wedge x \neq y$.
7. $\operatorname{card}(A)<\operatorname{card}(P(A))$.
8. Item 7 implies that not all infinite sets have the same cardinality!

The cardinal number $\operatorname{card}\left(\mathbb{N}^{*}\right)=\aleph_{0}$, is NOT the largest possible cardinality despite the fact that it is infinite! After all, $P\left(\mathbb{N}^{*}\right)$ has larger cardinality by item 7 . And $P\left(P\left(\mathbb{N}^{*}\right)\right)$ has larger cardinality still!
9. If $f: A \rightarrow B$ is onto then $\operatorname{card}(B) \leq \operatorname{card}(A)$.
10. A is countable when either: A is countably infinite (defined in item 5) or A is finite.
11. A is countable when $\operatorname{card}(A) \leq \aleph_{0}$.
12. A subset of a countable set is again countable.
13. If $A \subseteq B$ then $\operatorname{card}(A) \leq \operatorname{card}(B)$.
14. The ordering \leq on cardinal numbers is a partial ordering.

In particular: whenever $d \leq e$ and $e \leq d$ we may conclude $d=e$. The proof is not easy! (Schroeder-Bernstein theorem on p 88-89).
15. The ordering \leq on cardinal numbers is a total ordering. So given any two cardinals d, e we have $d \leq e$ or $d \geq e$. This means that one of these things must be true: $d<e$ or $d=e$ or $d>e$.
16. Set A is uncountable when $\operatorname{card}(A) \not \leq \aleph_{0}$. Using item 15 we can reformulate this by saying: A is uncountable when $\operatorname{card}(A)>\aleph_{0}$.
17. Any infinite set contains a countably infinite subset. (note: That an uncountable set has a countably infinite subset follows from item 16).
18. \mathbb{Z} and \mathbb{Q} are countable.
19. If you have countably many sets, and if each of these sets is countable, then their union is also countable.
20. \mathbb{R} is uncountable. $c=\operatorname{card}(\mathbb{R})=\operatorname{card}\left(P\left(\mathbb{N}^{*}\right)\right)$.
21. If $d=\operatorname{card}(D)$ and $e=\operatorname{card}(E)$ then $d+e$ is the cardinality of $D \bigcup E$ if we assume that $D \bigcap E=\emptyset$. Likewise, $d \cdot e$ is the cardinality of $D \times E$. d^{e} is the cardinality of D^{E} where $D^{E}=\{$ all functions from E to $D\}$.
22. If d, e are cardinal numbers, and if at least one of them is infinite, then $d+e=\max (d, e)$.
If $d \neq 0$ and $e \neq 0$ and at least one of them is infinite, then $d \cdot e$ equals $\max (d, e)$ as well. So for non-zero cardinals with at least one infinite, the operations,$+ \cdot$, max are the same!
23. There is a bijection between $P(A)$ and $\{0,1\}^{A}$, and hence $\operatorname{card}(P(A))=$ $\operatorname{card}\left(\{0,1\}^{A}\right)=\operatorname{card}(\{0,1\})^{\operatorname{card}(A)}=2^{\operatorname{card}(A)}$.
24. $c=\operatorname{card}(\mathbb{R})=\operatorname{card}\left(P\left(\mathbb{N}^{*}\right)\right)=\operatorname{card}\left(\{0,1\}^{\mathbb{N}^{*}}\right)=2^{\operatorname{card}\left(\mathbb{N}^{*}\right)}=2^{\aleph_{0}}$.
25. $\left(d_{1} d_{2}\right)^{e}=d_{1}^{e} d_{2}^{e}, \quad d^{e_{1}+e_{2}}=d^{e_{1}} d^{e_{2}}, \quad\left(d^{e}\right)^{f}=d^{e f}$
26. If you have d sets, and each of these sets has cardinality e, and if A is the union of all those sets, then $\operatorname{card}(A) \leq d e$ (if the d sets are disjoint, then you may replace the \leq by $=$). Now if d or e is infinite, and both are non-zero, then we can also replace $d e$ by $\max (d, e)$, see item 22 .
27. So far we have encountered these increasing cardinals:

$$
0,1,2,3, \ldots \aleph_{0}, c=2^{\aleph_{0}}, 2^{c}, 2^{2^{c}}, \ldots
$$

and we can wonder if there are any cardinals in between. Specifically, the continuum hypothesis asks if there is a cardinal d with $\aleph_{0}<d<c$.
From the axioms of set theory ($=$ the only statements mathematicians accept without a proof) it is impossible to prove or disprove this.

Writing Proofs.

1. Direct proof for $p \Longrightarrow q$.

Assume: p. To prove: q.
2. Proving $p \Longrightarrow q$ by contrapositive.

Assume: $\neg q$. To prove: $\neg p$.
3. Proving S by contradiction.

Assume: $\neg S$. To prove: a contradiction.
4. Proving $p \Longrightarrow q$ by contradiction.

Assume: p and $\neg q$. To prove: a contradiction.
5. Direct proof for a $\forall_{x \in A} P(x)$ statement.

To ensure you prove $P(x)$ for all (rather than for some) x in A, do this:
Start your proof with: Let $x \in A$. To prove: $P(x)$.
6. Direct proof for $\exists_{x \in A} P(x)$ statement.

Take $x:=[$ write down an expression that is in A, and satisfies $P(x)]$.
7. Proving $\forall_{x \in A} P(x)$ by contradiction.

Assume: $x \in A$ and $\neg P(x)$. To prove: a contradiction.
8. Proving $\exists_{x \in A} P(x)$ by contradiction.

Assume: $\neg P(x)$ for every $x \in A$. To prove: a contradiction.
9. Proving S by cases.

Suppose for example a statement p can help to prove S. Write two proofs:
Case 1: Assume p. To prove: S.
Case 2: Assume $\neg p$. To prove S.
10. Proving $p \wedge q$

Write two separate proofs: To prove: p. To prove: q.
11. Proving $p \Longleftrightarrow q$

Write two proofs. To prove: $p \Longrightarrow q$ To prove: $q \Longrightarrow p$.
12. Proving $p \vee q$

Method (1): Assume $\neg p$. To prove: q.
Method (2): Assume $\neg q$. To prove: p.
Method (3): Assume $\neg p$ and $\neg q$. To prove: a contradiction.
13. Using $p \vee q$ to prove another statement r.

Write two proofs:
Assume p. To prove r.
Assume q. To prove r.
14. How to use a for-all statement $\forall_{x \in A} P(x)$.

You need to produce an element of A, then use P for that element.
15. If you want to use an exists statement like $\exists_{x \in A} P(x)$ to prove another statement, then you may not choose x. All you know is $x \in A$ and $P(x)$.

