Hotel Infinity (Harm Derksen's version of a story by David Hilbert)

Once upon a time, there was a hotel called Holiday Infinity with an infinite number of rooms, numbered $1,2,3, \ldots$
One day, when all rooms were already occupied, a new guest arrived and asked for a room. The receptionist came up with a clever solution: All current guests were asked to move up 1 room. So guests in room n moved to room $n+1$ like this:

$$
1 \mapsto 2 \mapsto 3 \mapsto 4 \mapsto \cdots
$$

This freed up room number 1 which was given to the new guest.

The next day, Comfort Infinity, the hotel next door, had a fire. It too had infinitely many rooms. All of its infinitely many guests survived but they all needed a room in Holiday Infinity. Once again, the receptionist of Holiday Infinity found a clever solution: Guests in room n were asked to move to room $2 n$ like this:

$$
1 \mapsto 2, \quad 2 \mapsto 4, \quad 3 \mapsto 6, \quad 4 \mapsto 8, \quad \cdots
$$

This freed up the rooms with numbers $1,3,5,7, \ldots$ in Holiday Infinity, enough to house all guests from the now burnt Comfort Infinity.

Once people started to realize that one Infinite Hotel can hold all guests from two Infinite Hotels, a price war arose. This led to the sudden bankruptcy of a hotel chain called Days Infinity. This hotel chain had infinitely many hotels $(1,2,3, \ldots)$ each of which had infinitely many rooms $(1,2,3, \ldots)$.

After the bankruptcy, all guests of Days Infinity hotel chain suddenly needed a room in Holiday Infinity. Unfortunately, the receptionist quit in despair. Nevertheless, there would have been a solution! Can you find it? (use Theorem 1 on page 22 in the book).

