More sample questions for Intro Advanced Math.

1. For each, simplify the cardinality to one of: $0,1,2, \ldots, \aleph_{0}, c, 2^{c}, 2^{2^{c}}, \ldots$ For (a)-(h) you do not need to show your work, but for (i),(j) you need to justify your answer by showing all steps.
(a) \mathbb{N}
(b) $\emptyset \times \mathbb{R}$
(c) \mathbb{Q}
(d) $\mathbb{R} \times P(\mathbb{Q})$
(e) $\mathbb{Q}-\mathbb{Z}$
(f) $P(\mathbb{N})$
(g) $P(\mathbb{R})$
(h) $\{2,2\}$
(i) $\mathbb{R}^{\mathbb{N}}$
(j) $\mathbb{R}^{\mathbb{R}}$
2. Based on the answer in your previous question, does there exist: (it suffices to write yes/no):
(a) an injective function from $\mathbb{R}^{\mathbb{R}}$ to $P(\mathbb{R})$?
(b) an injective function from \mathbb{Q} to \mathbb{N} ?
(c) an injective function from $P(\mathbb{N})$ to \mathbb{N} ?
3. Prove, using only the definition, that the intervals $(0,1)$ and $(0,2)$ have the same cardinality.
4. Let A, B be sets and let $C=A \bigcup B$. Suppose that $A \bigcap B=\emptyset$ and:

- there is no bijection from A to C
- there is no bijection from B to C

Prove that A and B are finite sets.
5. Let A be any set. Prove that there is no bijection from \mathbb{N} to $P(A)$.

6. TURN IN:

We know that if d, e are natural numbers then $d \cdot e=e \cdot d$. But do you remember how to prove that? Lets prove this not only for natural numbers, but for all cardinal numbers! I will type the first line in the proof, and you finish it:

Proof: Let D, E be sets for which $d=o(D)$ and $e=o(E)$.
(a) Give the definition of $D \times E$.
(If you are not 100% sure then read section 1.5).
(b) Give a bijection from $D \times E$ to $E \times D$.
(Note: Don't write a lot of text. The thing you have to write down is a recipe that takes as input: an element of $D \times E$, and gives as output: an element of $E \times D$.)
(Also: don't use the letter d to denote elements of D because we already used d for something else. You can for example use the letters x resp. y to denote an element of D resp. E).
(c) Why does this bijection prove $d \cdot e=e \cdot d$?
(Study "List of facts on cardinal numbers" and look for $d \cdot e$).

7. TURN IN:

Find all sets A for which the following is true:
Every element of A is equal to 1 .
8. TURN IN:

Item 21 says that if d, e are cardinals, and if at least one of them is infinite, then $d+e=\max (d, e)$. It is quite hard to prove this in general. Lets prove it in a special case, when $d=e=\aleph_{0}$, as follows:
Let $\mathbb{N}^{*}=\{1,2,3,4, \ldots\}, E=\{2,4,6,8, \ldots\}, D=\{1,3,5,7, \ldots\}$.
So $E=\{$ all even positive integers $\}$, and $D=$ \{all odd positive integers $\}$.
(a) Give a bijection $f: \mathbb{N}^{*} \rightarrow E$ (write down: $f(n)=\ldots$)
(b) Give a bijection $g: \mathbb{N}^{*} \rightarrow D$.
(c) Explain why parts (a),(b) prove that $\aleph_{0}+\aleph_{0}=\aleph_{0}$. (Study "List of facts on cardinal numbers" and look for $d+e$).
9. Study past quizzes, tests, handouts, HW, and class notes.

Bring questions!

List of facts on cardinal numbers, shortened version.
Note: During the actual test, basic definitions that everyone must know (such as items 1-7) may be deleted!

1. $o(A)=o(B)$ means $\exists f: A \rightarrow B$ with f bijection.
2. $o(A) \leq o(B)$ means $\exists f: A \rightarrow B$ with f one-to-one.
3. \aleph_{0} is short notation for $o\left(\mathbb{N}^{*}\right)$.
4. c is short notation for $o(\mathbb{R})$.
5. The set A is countably infinite when: $o(A)=\aleph_{0}$. By item 1 this means: $\exists f: \mathbb{N}^{*} \rightarrow A$ with f bijection. Note, in that case $A=f\left(\mathbb{N}^{*}\right)=f(\{1,2, \ldots\})=\{f(1), f(2), \ldots\}$ and this means that all elements of A fit into one sequence $f(1), f(2), \ldots$
6. Notation: $x<y$ is short for: $x \leq y \wedge x \neq y$.
7. $o(A)<o(P(A))$.
8. Item 7 implies that not all infinite sets have the same cardinality! The cardinal number $o\left(\mathbb{N}^{*}\right)=\aleph_{0}$, is NOT the largest possible cardinality despite the fact that it is infinite! After all, $P\left(\mathbb{N}^{*}\right)$ has larger cardinality by item 7 . And $P\left(P\left(\mathbb{N}^{*}\right)\right)$ has larger cardinality still!
9. If $f: A \rightarrow B$ is onto then $o(B) \leq o(A)$.
10. A is countable when either: A is countably infinite (defined in item 5) or A is finite.
11. A is countable when $o(A) \leq \aleph_{0}$.
12. A subset of a countable set is again countable.
13. If $A \subseteq B$ then $o(A) \leq o(B)$.
14. The ordering \leq on cardinal numbers is a partial ordering.

In particular: whenever $d \leq e$ and $e \leq d$ we may conclude $d=e$. You might remember that the proof was not easy!
15. The ordering \leq on cardinal numbers is a total ordering. So given any two cardinals d, e we have $d \leq e$ or $d \geq e$. This means that one of these things must be true: $d<e$ or $d=e$ or $d>e$.
16. Set A is uncountable when $o(A) \not \subset \aleph_{0}$. Using item 15 we can reformulate this by saying: A is uncountable when $o(A)>\aleph_{0}$.
17. Any infinite set contains a countably infinite subset. (note: That an uncountable set has a countably infinite subset follows from item 16).
18. \mathbb{Z} and \mathbb{Q} are countable.
19. If you have countably many sets, and if each of these sets is countable, then their union is also countable.
20. \mathbb{R} is uncountable. $c=o(\mathbb{R})=o\left(P\left(\mathbb{N}^{*}\right)\right)$.
21. If $d=o(D)$ and $e=o(E)$ then $d+e$ is the cardinality of $D \bigcup E$ if we assume that $D \bigcap E=\emptyset$. Likewise, $d \cdot e$ is the cardinality of $D \times E$. d^{e} is the cardinality of D^{E} where $D^{E}=\{$ all functions from E to $D\}$.
22. If d, e are cardinal numbers, and if at least one of them is infinite, then $d+e=\max (d, e)$.
If $d \neq 0$ and $e \neq 0$ and at least one of them is infinite, then $d \cdot e$ equals $\max (d, e)$ as well. So for non-zero cardinals with at least one infinite, the operations,$+ \cdot$, max are the same!
23. There is a bijection between $P(A)$ and $\{0,1\}^{A}$, and hence $o(P(A))=$ $o\left(\{0,1\}^{A}\right)=o(\{0,1\})^{o(A)}=2^{o(A)}$.
24. $c=o(\mathbb{R})=o\left(P\left(\mathbb{N}^{*}\right)\right)=o\left(\{0,1\}^{\mathbb{N}^{*}}\right)=2^{o\left(\mathbb{N}^{*}\right)}=2^{\aleph_{0}}$.
25. $\left(d_{1} d_{2}\right)^{e}=d_{1}^{e} d_{2}^{e}, \quad d^{e_{1}+e_{2}}=d^{e_{1}} d^{e_{2}}, \quad\left(d^{e}\right)^{f}=d^{e f}$
26. If you have d sets, and each of these sets has cardinality e, and if A is the union of all those sets, then $o(A) \leq d e$ (if the d sets are disjoint, then you may replace the \leq by $=$). Now if d or e is infinite, and both are non-zero, then we can also replace $d e$ by $\max (d, e)$, see item 22 .
27. So far we have encountered these increasing cardinals:

$$
0,1,2,3, \ldots \aleph_{0}, c=2^{\aleph_{0}}, 2^{c}, \quad 2^{2^{c}}, \ldots
$$

and we can wonder if there are any cardinals in between. Specifically, the continuum hypothesis asks if there is a cardinal d with $\aleph_{0}<d<c$. From the axioms of set theory ($=$ the only statements mathematicians accept without a proof) it is impossible to prove or disprove this.

