More sample questions for Intro Advanced Math.

1. For each, simplify the cardinality to one of: $0, 1, 2, \ldots, \aleph_0, c, 2^c, 2^{2^c}, \ldots$

For (a)–(h) you do not need to show your work, but for (i),(j) you need to justify your answer by showing all steps.

- (a) ℕ
- (b) $\emptyset \times \mathbb{R}$
- (c) \mathbb{Q}
- (d) $\mathbb{R} \times P(\mathbb{Q})$
- (e) $\mathbb{Q} \mathbb{Z}$
- (f) $P(\mathbb{N})$
- (g) $P(\mathbb{R})$
- (h) $\{2,2\}$
- (i) $\mathbb{R}^{\mathbb{N}}$
- (j) $\mathbb{R}^{\mathbb{R}}$
- 2. Based on the answer in your previous question, does there exist: (it suffices to write yes/no):
 - (a) an injective function from $\mathbb{R}^{\mathbb{R}}$ to $P(\mathbb{R})$?
 - (b) an injective function from \mathbb{Q} to \mathbb{N} ?
 - (c) an injective function from $P(\mathbb{N})$ to \mathbb{N} ?
- 3. Prove, using only the definition, that the intervals (0, 1) and (0, 2) have the same cardinality.
- 4. Let A, B be sets and let $C = A \bigcup B$. Suppose that $A \bigcap B = \emptyset$ and:
 - there is **no** bijection from A to C
 - there is **no** bijection from B to C

Prove that A and B are finite sets.

5. Let A be any set. Prove that there is no bijection from \mathbb{N} to P(A).

6. TURN IN:

We know that if d, e are natural numbers then $d \cdot e = e \cdot d$. But do you remember how to prove that? Lets prove this not only for natural numbers, but for all cardinal numbers! I will type the first line in the proof, and you finish it:

Proof: Let D, E be sets for which d = o(D) and e = o(E).

- (a) Give the definition of $D \times E$. (If you are not 100% sure then read section 1.5).
- (b) Give a bijection from $D \times E$ to $E \times D$.

(Note: Don't write a lot of text. The thing you have to write down is a recipe that takes as input: an element of $D \times E$, and gives as output: an element of $E \times D$.)

(Also: don't use the letter d to denote elements of D because we already used d for something else. You can for example use the letters x resp. y to denote an element of D resp. E).

(c) Why does this bijection prove $d \cdot e = e \cdot d$? (Study "List of facts on cardinal numbers" and look for $d \cdot e$).

7. TURN IN:

Find all sets A for which the following is true: Every element of A is equal to 1.

8. TURN IN:

Item 21 says that if d, e are cardinals, and if at least one of them is infinite, then $d + e = \max(d, e)$. It is quite hard to prove this in general. Lets prove it in a special case, when $d = e = \aleph_0$, as follows: Let $\mathbb{N}^* = \{1, 2, 3, 4, \ldots\}, E = \{2, 4, 6, 8, \ldots\}, D = \{1, 3, 5, 7, \ldots\}.$ So $E = \{$ all even positive integers $\}$, and $D = \{$ all odd positive integers $\}$.

- (a) Give a bijection $f : \mathbb{N}^* \to E$ (write down: $f(n) = \ldots$)
- (b) Give a bijection $g: \mathbb{N}^* \to D$.
- (c) Explain why parts (a),(b) prove that $\aleph_0 + \aleph_0 = \aleph_0$. (Study "List of facts on cardinal numbers" and look for d + e).
- 9. Study past quizzes, tests, handouts, HW, and class notes. Bring questions!

List of facts on cardinal numbers, shortened version.

Note: During the actual test, basic definitions that everyone must know (such as items 1-7) may be deleted!

- 1. o(A) = o(B) means $\exists f : A \to B$ with f bijection.
- 2. $o(A) \leq o(B)$ means $\exists f : A \to B$ with f one-to-one.
- 3. \aleph_0 is short notation for $o(\mathbb{N}^*)$.
- 4. c is short notation for $o(\mathbb{R})$.
- 5. The set A is countably infinite when: $o(A) = \aleph_0$. By item 1 this means: $\exists f : \mathbb{N}^* \to A$ with f bijection. Note, in that case $A = f(\mathbb{N}^*) = f(\{1, 2, \ldots\}) = \{f(1), f(2), \ldots\}$ and this means that all elements of A fit into one sequence $f(1), f(2), \ldots$
- 6. Notation: x < y is short for: $x \le y \land x \ne y$.
- 7. o(A) < o(P(A)).
- 8. Item 7 implies that not all infinite sets have the same cardinality! The cardinal number $o(\mathbb{N}^*) = \aleph_0$, is NOT the largest possible cardinality despite the fact that it is infinite! After all, $P(\mathbb{N}^*)$ has larger cardinality by item 7. And $P(P(\mathbb{N}^*))$ has larger cardinality still!
- 9. If $f: A \to B$ is onto then $o(B) \leq o(A)$.
- 10. A is *countable* when either: A is countably infinite (defined in item 5) or A is finite.
- 11. A is countable when $o(A) \leq \aleph_0$.
- 12. A subset of a countable set is again countable.
- 13. If $A \subseteq B$ then $o(A) \leq o(B)$.
- 14. The ordering \leq on cardinal numbers is a *partial ordering*. In particular: whenever $d \leq e$ and $e \leq d$ we may conclude d = e. You might remember that the proof was not easy!
- 15. The ordering \leq on cardinal numbers is a *total ordering*. So given any two cardinals d, e we have $d \leq e$ or $d \geq e$. This means that one of these things must be true: d < e or d = e or d > e.

- 16. Set A is uncountable when $o(A) \not\leq \aleph_0$. Using item 15 we can reformulate this by saying: A is uncountable when $o(A) > \aleph_0$.
- 17. Any infinite set contains a countably infinite subset. (note: That an uncountable set has a countably infinite subset follows from item 16).
- 18. \mathbb{Z} and \mathbb{Q} are countable.
- 19. If you have countably many sets, and if each of these sets is countable, then their union is also countable.
- 20. \mathbb{R} is uncountable. $c = o(\mathbb{R}) = o(P(\mathbb{N}^*)).$
- 21. If d = o(D) and e = o(E) then d + e is the cardinality of $D \bigcup E$ if we assume that $D \bigcap E = \emptyset$. Likewise, $d \cdot e$ is the cardinality of $D \times E$. d^e is the cardinality of D^E where $D^E = \{$ all functions from E to $D \}$.
- 22. If d, e are cardinal numbers, and if at least one of them is infinite, then $d + e = \max(d, e)$.

If $d \neq 0$ and $e \neq 0$ and at least one of them is infinite, then $d \cdot e$ equals $\max(d, e)$ as well. So for non-zero cardinals with at least one infinite, the operations $+, \cdot, \max$ are the same!

- 23. There is a bijection between P(A) and $\{0,1\}^A$, and hence $o(P(A)) = o(\{0,1\}^A) = o(\{0,1\})^{o(A)} = 2^{o(A)}$.
- 24. $c = o(\mathbb{R}) = o(P(\mathbb{N}^*)) = o(\{0,1\}^{\mathbb{N}^*}) = 2^{o(\mathbb{N}^*)} = 2^{\aleph_0}.$
- 25. $(d_1d_2)^e = d_1^e d_2^e, \quad d^{e_1+e_2} = d^{e_1}d^{e_2}, \quad (d^e)^f = d^{e_f}$
- 26. If you have d sets, and each of these sets has cardinality e, and if A is the union of all those sets, then $o(A) \leq de$ (if the d sets are disjoint, then you may replace the \leq by =). Now if d or e is infinite, and both are non-zero, then we can also replace de by $\max(d,e)$, see item 22.
- 27. So far we have encountered these increasing cardinals:

$$0, 1, 2, 3, \ldots \aleph_0, c = 2^{\aleph_0}, 2^c, 2^{2^c}, \ldots$$

and we can wonder if there are any cardinals in between. Specifically, the *continuum hypothesis* asks if there is a cardinal d with $\aleph_0 < d < c$.

From the axioms of set theory (= the only statements mathematicians accept without a proof) it is impossible to prove or disprove this.