1. Simplify the following cardinal numbers to the point where they look like 0, 1, 2, . . ., or \(\aleph_0 \), or \(c \), or \(2^c \), or \(2(2^c) \), etc.

\[
\begin{align*}
\aleph_0 + \aleph_0 & \quad 2^{\aleph_0} + 2^{\aleph_0} \\
o(\{3, 3, 3\}) & \quad (2^c)^2 \\
o(P(\emptyset)) & \quad o(P(\mathbb{Q}) - P(\mathbb{N})) \\
o(P(\mathbb{R})\mathbb{R}) & \quad o(\emptyset^\mathbb{R} \times \mathbb{R}) \\
o(\mathbb{R} \times \mathbb{N}) & \quad o(\mathbb{R}^\mathbb{N}) \\
7^{\aleph_0} & \quad o(P(\mathbb{N})) \\
\end{align*}
\]

2. Let \(A, B, C \) be sets.

(a) Write down the definition of \(o(A) \leq o(B) \).

(b) We know that if \(o(A) \leq o(B) \) and \(o(B) \leq o(C) \) then \(o(A) \leq o(C) \).

Write down a proof for this rule using only the definition of \(\leq \).

3. (a) Give the definition of cardinal addition: if \(D \cap E = \emptyset \) and \(d = o(D) \) and \(e = o(E) \) then \(d + e \) is defined as:

(b) Let \(A \) be an infinite set, let \(B \) be a subset and let \(C = A - B \).

Suppose that there is a bijection from \(B \) to \(C \).

Prove that there is a bijection from \(A \) to \(C \).

(c) Give the definition of cardinal multiplication.

(d) Let \(A, B, C \) as in part (b), and assume that \(B \) and \(C \) are not empty.

Prove that there is a bijection from \(A \) to \(B \times C \).

4. Let \(\mathbb{N}^* = \{1, 2, 3, 4, \ldots\}, E = \{2, 4, 6, 8, \ldots\}, D = \{1, 3, 5, 7, \ldots\} \).

So \(E = \{\text{all even positive integers}\} \), and \(D = \{\text{all odd positive integers}\} \).

(a) Give a bijection \(f : \mathbb{N}^* \to E \) (write down: \(f(n) = \ldots \))

(b) Give a bijection \(g : \mathbb{N}^* \to D \).

(c) Explain why parts (a), (b), and Ex.3(a), show: \(\aleph_0 + \aleph_0 = \aleph_0 \).
5. Take home: Suppose that for each $n \in \mathbb{N}^*$ you are given a subset $A_n \subseteq \mathbb{R}$. Suppose that $\mathbb{R} = A_1 \cup A_2 \cup A_3 \cup \cdots$. Show that at least one of those sets A_n must be uncountable.

6. Take home: Let $A = \{ S \subseteq \mathbb{R} \mid S \text{ countable}\}$. So A is the set of all countable subsets of \mathbb{R}, in other words: $S \in A$ if and only if S is countable and $S \subseteq \mathbb{R}$.

Prove that $o(A) = c$.

Hint: Find an onto function $F : \mathbb{R}^{\mathbb{N}^*} \rightarrow B$ where $B = A - \{\emptyset\}$.