Intro Advanced Math., test 2, October 21, 2015

1. Simplify the following cardinal numbers to the point where they look like 0, 1, 2, ..., or \aleph_0 , or c, or 2^c , or $2^{(2^c)}$, etc.

$\aleph_0 + \aleph_0$	$\aleph_0 + c + 2^{\aleph_0}$
$o({3,3,3})$	$(2^c)^{c^2}$
$o(P(\emptyset))$	$o(P(\mathbb{Q}) - P(\mathbb{N}))$
$o(P(\mathbb{R})^\mathbb{R})$	$o(\emptyset^{\mathbb{R}} imes \mathbb{R})$
$o(\mathbb{R} \times \mathbb{N})$	$o(\mathbb{R}^{\mathbb{N}})$
7^{\aleph_0}	$o(P(\mathbb{N}))$

- 2. Let A, B, C be sets.
 - (a) Write down the definition of $o(A) \leq o(B)$.
 - (b) We know that

if
$$o(A) \le o(B)$$
 and $o(B) \le o(C)$ then $o(A) \le o(C)$.

Write down a proof for this rule using only the definition of \leq .

- 3. (a) Give the definition of cardinal addition: if $D \cap E = \emptyset$ and d = o(D) and e = o(E) then d + e is defined as:
 - (b) Let A be an infinite set, let B be a subset and let C = A B. Suppose that there is a bijection from B to C. Prove that there is a bijection from A to C.
 - (c) Give the definition of cardinal multiplication.
 - (d) Let A, B, C as in part (b), and assume that B and C are not empty. Prove that there is a bijection from A to $B \times C$.
- 4. Let $\mathbb{N}^* = \{1, 2, 3, 4, \ldots\}$, $E = \{2, 4, 6, 8, \ldots\}$, $D = \{1, 3, 5, 7, \ldots\}$. So $E = \{\text{all even positive integers}\}$, and $D = \{\text{all odd positive integers}\}$.
 - (a) Give a bijection $f: \mathbb{N}^* \to E$ (write down: $f(n) = \ldots$)
 - (b) Give a bijection $g: \mathbb{N}^* \to D$.
 - (c) Explain why parts (a),(b), and Ex.3(a), show: $\aleph_0 + \aleph_0 = \aleph_0$.

- 5. Take home: Suppose that for each $n \in \mathbb{N}^*$ you are given a subset $A_n \subseteq \mathbb{R}$. Suppose that $\mathbb{R} = A_1 \bigcup A_2 \bigcup A_3 \bigcup \cdots$. Show that at least one of those sets A_n must be uncountable.
- 6. Take home: Let $A = \{S \subset \mathbb{R} \mid S \text{ countable}\}$. So A is the set of all *countable* subsets of \mathbb{R} , in other words: $S \in A$ if and only if S is countable and $S \subset \mathbb{R}$.

Prove that o(A) = c.

Hint: Find an onto function $F: \mathbb{R}^{\mathbb{N}^*} \to B$ where $B = A - \{\emptyset\}$.