Handout WP: Writing Proofs.

1. Direct proof of an if-then statement.

Many theorems have the form "if p then q" where p, q are statements. (Note: p, q are often composed of other statements with and's and or's). A direct proof of $p \Longrightarrow q$ works like this:

Assume: p. To prove: q.

2. Proof by contrapositive.

The statement $p \Longrightarrow q$ is *logically equivalent to* (means: same truth-table) the statement $\neg q \Longrightarrow \neg p$. This means we can prove $p \Longrightarrow q$ like this:

Assume: $\neg q$. To prove: $\neg p$.

Remark: For any statement p you need to be able to compute $\neg p$ (see the second handout "Quantifiers and Negation" for rules and examples on computing $\neg p$ for any statement p).

3. Proof by contradiction.

One way to prove a statement S is as follows:

Assume: $\neg S$.

To prove: a contradiction.

Proving a contradiction means proving something that is obviously wrong (e.g. $x \neq x$, or the negation of a given/assumed/proved statement).

4. Proving an if-then statement by contradiction.

If S is the statement $p \Longrightarrow q$ then $\neg S$ is logically equivalent to $p \land \neg q$. So a proof-by-contradiction for $p \Longrightarrow q$ works like this:

Assume: p and $\neg q$. To prove: a contradiction.

5. Direct proof for a for-all statement.

If P(x) is a statement involving x, to prove a statement like this $\forall_{x \in A} P(x)$ you write the following:

Let $x \in A$. To prove: P(x).

Explanation: When you write "Let $x \in A$ " then you are telling the reader that x is an element of A, but you are not specifying *which* element of A. That means that x could be any element of A. Once you proved P(x) for such x then P(x) must be true for any element of A.

What not to do: Suppose $f: S \to T$ and you want to prove $\forall_{t \in T} P(t)$. You should start with: "Let $t \in T$ ". But what if you this do instead:

Some steps ... take t = f(s) ... some steps ... hence P(t).

Then you only proved P(t) for some, but not all, elements of T.

6. Direct proof for an exists statement.

If P(x) is a statement involving x, to prove a statement like this $\exists_{x \in A} P(x)$ you write the following:

Take x :=[write down an expression].

If it is obvious that the expression you wrote down meets the requirements $x \in A$ and P(x) then the proof is now complete; you have a 1-line proof! (only non-obvious requirements need to be checked). If you wrote a lot of text but not this 1 line, then your proof is still not complete.

7. Proving a for-all statement by contradiction.

If S is the statement $\forall_{x \in A} P(x)$ then $\neg S$ is the statement $\exists_{x \in A} \neg P(x)$. So if we follow item 3 (i.e. prove S by assuming $\neg S$ and then proving a contradiction) then the proof would start like this:

Assume: x is an element of A and $\neg P(x)$. To prove: a contradiction.

8. Proving an exists-statement by contradiction.

If S is the statement $\exists_{x \in A} P(x)$ then $\neg S$ is the statement $\forall_{x \in A} \neg P(x)$.

Assume: $\neg P(x)$ for every $x \in A$. To prove: a contradiction.

9. Proof by cases.

Suppose we need to prove some statement P(x) where x can only have a few possible values. In that case, we can write a separate proof for each possible value.

Example 1: Suppose we have to prove P(x) but we know that x can only be u or v or w. Then we write three proofs:

Case 1: x = u. Write a proof for P(u).

Case 2: x = v. Write a proof for P(v).

Case 3: x = w. Write a proof for P(w).

Example 2: Suppose we have to prove a statement p but there is some other statement q such that we can easily find a proof for $q \Longrightarrow p$. Then we can do the following, we split the proof in two cases:

Case 1: Assume q is true and prove p under that assumption. Case 2: Assume q is false now prove p under that assumption.

These cases combined provide a complete proof for p.

10. Proving an and statement.

To prove $p \wedge q$ write two separate proofs:

To prove: \boldsymbol{p}

To prove: q

11. **Proving an iff statement** (iff = "if and only if").

The statement $p \iff q$ is logically equivalent to $(p \implies q) \land (q \implies p)$. So to prove $p \iff q$ you have to write two proofs:

To prove: $p \Longrightarrow q$

To prove: $q \Longrightarrow p$

Proofs of "if and only if" statements in math books typically look like:

Assume $p \ldots$ some math \ldots hence q. For the converse \ldots

Recall that $q \Longrightarrow p$ is called the **converse** of $p \Longrightarrow q$. Math books assume you know that "For the converse" means "To prove: $q \Longrightarrow p$ ".

12. Proving an or statement.

The statement $p \lor q$ means that at least one of p or q is true. But which one? That question makes it tricky to give a direct proof of $p \lor q$. But you can always replace a statement by a logically equivalent statement. We have several options:

(1) $p \lor q$ is logically equivalent to $\neg p \Longrightarrow q$.

(2) $p \lor q$ is logically equivalent to $\neg q \Longrightarrow p$.

(3) $\neg(p \lor q)$ is logically equivalent to $\neg p \land \neg q$.

That gives us several ways to prove $p \lor q$.

Method (1): Assume $\neg p$. To prove: q.

Method (2): Assume $\neg q$. To prove: p.

Method (3): Assume $\neg p$ and $\neg q$. To prove: a contradiction.

Which method is best? That depends on what you already know. Suppose for instance you see a theorem in the book of the form $\neg q \Longrightarrow r$. In that case you want to try method (2) (assume $\neg q$) because then you can use the theorem to conclude r. Hopefully that brings you closer to goal p.

13. Using an or statement.

Suppose you want to prove r, and you are given $p \lor q$ which means that at least one of p or q is true. But which one? So we write two proofs:

Assume p. To prove r.

Assume q. To prove r.

The two proofs combined show that $p \lor q$ implies r.

This is the same as "Proof by cases" from item 9; given $p \lor q$ you distinguish two cases: Case 1: assume p, to prove r. Case 2: assume q, to prove r.

- 14. If you want to use a for-all statement like $\forall_{x \in A} P(x)$ to prove another statement, often the best strategy is to make a clever choice for one particular element of A, and then use the fact that P is true for that element.
- 15. If you want to use an exists statement like $\exists_{x \in A} P(x)$ to prove another statement, then you may not choose x. All you know is $x \in A$ and P(x).