List of facts for Chapter 4.

1. A metric space M is set with a distance function with the following
properties (for all a,b,c € M): D(a,a) =0, D(a,b) > 0 whenever a # b,
D(b,a) = D(a,b), and the triangle inequality: D(a,c) < D(a,b)+ D(b,c).

2. S.(x) is the open ball with radius r and center x.
Sy(x) = {p € M|D(x,p) < r}. So this is the set of all points you can
reach if you start from x and then travel a distance that is less than r.

3. We say that p and x are r-close when D(p,z) < 7.
So Sy (x) is the set of all points that are r-close to x.

4. Any set that contains S, (x) for some r > 0 is called a neighborhood of
x. So a set U is a neighborhood of x when there exists some positive r
such that all points that are r-close to = are in the set U.

5. Let U be a subset of M. The following statements are equivalent (they
are either all true, or all false).

(a) 3r>0 Sr(z) CU
(b) U is a neighborhood of x

(¢) U contains a neighborhood of z.

6. A set U C M is open when property 5(a) is true for every x in U.
(Note: if 5(a) is true then 5(b) and 5(c) are true as well.)

7. Note: a neighborhood of = is not the same as an open set, because if we
want to check that U is an open set then we need to check property 5(a)
for every element of U. Whereas to check if U is a neighborhood of z, we
only have to check property 5(a) for one element (namely x).

8. The empty set @ is open. To check that a set is open, we have to check
item 6, which means checking 5(a) for every z in our set. If U = () then
the number of 2’s for which we have to check 5(a) is zero: The condition
in item 6 is vacuously true.

Even though the empty set is open, it is not a neighborhood of any point
x € M because to be a neighborhood of z, you have to contain S, (x) for
some 7 > 0, and that is not empty because = € S,.(x).

For any metric space M, the set M itself is always open (even if M does
not “look like an open set”!). This is because the S, (x) in item 5(a) is
defined in item 2 in such a way that S,(x) is always a subset of M, so
item 5(a) always holds if U = M.

9. An open neighborhood is (these conditions are equivalent):

(a) A neighborhood of x that happens to be an open set.
(b) An open set that happens to contain z.



10. Any union of open sets is always open (even if you take a union of infinitely
many sets).

11. The intersection of finitely many open sets is again open.

12. zx is an isolated point when:

()
(b)

()

{z} is open

There is a neighborhood of x that contains just z and no other ele-
ments.

) Sr(m) = {.I}

This means that there exists some positive distance r such that if
you travel in your metric space M, starting at x, traveling a distance
that is less than r, then the only point in M you can reach is the
point x itself. So travelers that can travel only a very small distance
can, if they are at the point x, only reach the point z and no other
points. From the viewpoint of those travelers you can see that it is
reasonable terminology to say that the point z is isolated.

Example 1: if M is a finite set, then every point x € M is iso-
lated. Why? Let r be the smallest distance between the finitely
many points. If you are a traveler that can only travel a distance
< r, and you’re at a point z, then you can not travel to any other
point, and so we say that x is isolated.

Can you make this intuitive explanation more formal? (don’t use
words like “travelers”, instead, make short formal statements that
cite definitions and/or theorems).

Example 2: Say M = [0,1]J{2,3,4,5}. Now suppose that in any
given trip you can only travel a distance < r where say » = 0.1. Then
you can travel from 0.35 to 0.4 in one trip. You can also travel from
0.35 to 0.48 if you take two trips. But you can not travel from 2 to
any other point. So 2 is isolated. The same goes for the points 3, 4,
5. If you're at any one of those points, and if > 0 is small enough,
and if you can only travel distances < r, then you're stuck.

Can you make this more formal?

Let M =[0,1]U{2,3,4,5} with the usual distance function.

Give formal proof for: The isolated points in M are 2, 3,4, 5.

A sequence x1, X2, ...in M can only converge to x when there is some
N such that all z; = x for all # > N. In other words, when there is
some tail zx,x N1, ... of your sequence that equals z, z, . . ..



13.

14.

15.

16.

x is not isolated when

(a) {x} is not open.
(b

) Every neighborhood of  will contain more elements than just x.
(c) For every r > 0 the set S,(x) contains more than just x.
)

(d) There exists a sequence 1, X2, ... in M that converges to x but where
T, # x for every n
(To produce such a sequence, do the following: for every n, the set
S1(x) — {x} is not empty by part (c), so we can choose some z in
S1 (z) —{z}. Then z,, # 2 but D(z,,z) < % and therefore z1, x5, ...
converges to x.)

Let x1, %2, ... be a sequence. A tail is what you get when you throw away
the first . .. (finitely many) elements. So a tail is a subsequence of the form
TN, TN+1,- .- for some N (here we threw away the first N — 1 elements).
Z1,T2,... converges to x when

(a) For every e > 0 the sequence has a tail contained in Sc(z).
(b) \V’€>0 HN viZN D(.Z‘i, m) <€

When these equivalent properties hold then we say that = is the limit of
the sequence z1, s, .. ..

The most boring convergent sequences are those that have a tail that is
constant (meaning: sequences for which there exists some N such that all
the z; with ¢ > N are the same). Such a sequence obviously converges. If
x is isolated, then item 12(d) says that only boring sequences can converge
to x.

However, if x is not isolated, then there are more interesting sequences
that converge to x, see item 13(d).

M is a discrete set when

(a) Every z in M is isolated.

(b) {z} is open for every x € M.

(¢) Every set U C M is open.
To show how (b) implies (c), lets take some set U. Now for every
x € U take the set {z} (you might have infinitely many of these sets
because U could perhaps be an infinite set). Now take the union of
all those sets and you get

U=}

zeU

By item 10 this union is an open set. But clearly, this union is just
U itself.

If M is discrete then every U C M is open, so if M is discrete then it makes
little sense to talk about open sets. As an example, if M has finitely many
elements, then M is discrete, see Example 1 in item 12.



17. A set FF C M is closed when

(a) If there is a sequence x1,xs,... in F that converges to © € M then
this  must be in F.

(b) If Sy.(x)[ F is not empty for every r > 0 then z € F.
(¢) If FNU # 0 for every neighborhood U of x then z € F.

(

[N

) If every neighborhood of x intersects F' (if every neighborhood of x
has element(s) in common with F') then x € F.

(e) The complement of F' is open, i.e. F* =M — F is open.
(f) F contains all of its limit points (if « is a limit point of F then x is
in F).

18. A point z is called a limit point of A when there is a sequence in A — {z}
that converges to x.

19. Notation: A is called the closure of the set A

(a) A is the union of A and all of its limit points.
A is the smallest closed set that contains A.
A is the intersection of all closed sets that contain A.

(e) * € A <= T a sequence T1,Ts,... € A that converges to .
(f) © € A <= V>0 there is a point in A that is e-close to .

20. z is a limit point of A if x is in the closure of A — {z}.

21. Ifxq,x9,...converges to x and y1, ya, . . . converges to y, then D(z1,y1), D(z2,y2), . . -

converges to D(x,y).
This is Theorem 37, the proof uses the triangle inequality.
Use this fact to prove exercises 6(a), 6(b), and 6(c) on page 78.

22. The diameter of a set A is the supremum of {D(z,y)|x,y € A}.

23. If A is a set, then the diameter of A equals the diameter of 4. To prove
this, you need item 21.

24. The union of finitely many closed sets is again closed.

25. The intersection of closed sets (even if you take infinitely many closed
sets!) is again closed.

26. Exercise: Prove that a set with one point is closed. Then, using item 24
it follows that every finite set is closed.

27. A subset A C M is called dense in M if
(a) A=M

(b) For every & € M there exists a sequence x1, I, ... € A that converges
to x (see 19e)

(¢) Every non-empty open set intersects A (see 19d)



