List of facts for Chapter 4.

1. A metric space M is set with a distance function with the following properties (for all $a, b, c \in M): D(a, a)=0, D(a, b)>0$ whenever $a \neq b$, $D(b, a)=D(a, b)$, and the triangle inequality: $D(a, c) \leq D(a, b)+D(b, c)$.
2. $S_{r}(x)$ is the open ball with radius r and center x.
$S_{r}(x)=\{p \in M \mid D(x, p)<r\}$. So this is the set of all points you can reach if you start from x and then travel a distance that is less than r.
3. We say that p and x are r-close when $D(p, x)<r$.

So $S_{r}(x)$ is the set of all points that are r-close to x.
4. Any set that contains $S_{r}(x)$ for some $r>0$ is called a neighborhood of x. So a set U is a neighborhood of x when there exists some positive r such that all points that are r-close to x are in the set U.
5. Let U be a subset of M. The following statements are equivalent (they are either all true, or all false).
(a) $\exists_{r>0} S_{r}(x) \subseteq U$
(b) U is a neighborhood of x
(c) U contains a neighborhood of x.
6. A set $U \subseteq M$ is open when property $5(\mathrm{a})$ is true for every x in U. (Note: if $5(\mathrm{a})$ is true then $5(\mathrm{~b})$ and $5(\mathrm{c})$ are true as well.)
7. Note: a neighborhood of x is not the same as an open set, because if we want to check that U is an open set then we need to check property 5 (a) for every element of U. Whereas to check if U is a neighborhood of x, we only have to check property 5 (a) for one element (namely x).
8. The empty set \emptyset is open. To check that a set is open, we have to check item 6 , which means checking $5(\mathrm{a})$ for every x in our set. If $U=\emptyset$ then the number of x 's for which we have to check $5(\mathrm{a})$ is zero: The condition in item 6 is vacuously true.
Even though the empty set is open, it is not a neighborhood of any point $x \in M$ because to be a neighborhood of x, you have to contain $S_{r}(x)$ for some $r>0$, and that is not empty because $x \in S_{r}(x)$.
For any metric space M, the set M itself is always open (even if M does not "look like an open set"!). This is because the $S_{r}(x)$ in item $5(\mathrm{a})$ is defined in item 2 in such a way that $S_{r}(x)$ is always a subset of M, so item 5(a) always holds if $U=M$.
9. An open neighborhood is (these conditions are equivalent):
(a) A neighborhood of x that happens to be an open set.
(b) An open set that happens to contain x.
10. Any union of open sets is always open (even if you take a union of infinitely many sets).
11. The intersection of finitely many open sets is again open.
12. x is an isolated point when:
(a) $\{x\}$ is open
(b) There is a neighborhood of x that contains just x and no other elements.
(c) $\exists_{r>0} S_{r}(x)=\{x\}$

This means that there exists some positive distance r such that if you travel in your metric space M, starting at x, traveling a distance that is less than r, then the only point in M you can reach is the point x itself. So travelers that can travel only a very small distance can, if they are at the point x, only reach the point x and no other points. From the viewpoint of those travelers you can see that it is reasonable terminology to say that the point x is isolated.

Example 1: if M is a finite set, then every point $x \in M$ is isolated. Why? Let r be the smallest distance between the finitely many points. If you are a traveler that can only travel a distance $<r$, and you're at a point x, then you can not travel to any other point, and so we say that x is isolated.
Can you make this intuitive explanation more formal? (don't use words like "travelers", instead, make short formal statements that cite definitions and/or theorems).

Example 2: Say $M=[0,1] \bigcup\{2,3,4,5\}$. Now suppose that in any given trip you can only travel a distance $<r$ where say $r=0.1$. Then you can travel from 0.35 to 0.4 in one trip. You can also travel from 0.35 to 0.48 if you take two trips. But you can not travel from 2 to any other point. So 2 is isolated. The same goes for the points 3,4 , 5. If you're at any one of those points, and if $r>0$ is small enough, and if you can only travel distances $<r$, then you're stuck. Can you make this more formal?
Let $M=[0,1] \bigcup\{2,3,4,5\}$ with the usual distance function. Give formal proof for: The isolated points in M are 2, 3, 4, 5.
(d) A sequence x_{1}, x_{2}, \ldots in M can only converge to x when there is some N such that all $x_{i}=x$ for all $i \geq N$. In other words, when there is some tail x_{N}, x_{N+1}, \ldots of your sequence that equals x, x, \ldots.
13. x is not isolated when
(a) $\{x\}$ is not open.
(b) Every neighborhood of x will contain more elements than just x.
(c) For every $r>0$ the set $S_{r}(x)$ contains more than just x.
(d) There exists a sequence x_{1}, x_{2}, \ldots in M that converges to x but where $x_{n} \neq x$ for every n
(To produce such a sequence, do the following: for every n, the set $S_{\frac{1}{n}}(x)-\{x\}$ is not empty by part (c), so we can choose some x_{n} in $S_{\frac{1}{n}}^{n}(x)-\{x\}$. Then $x_{n} \neq x$ but $D\left(x_{n}, x\right)<\frac{1}{n}$ and therefore x_{1}, x_{2}, \ldots converges to x.)
14. Let x_{1}, x_{2}, \ldots be a sequence. A tail is what you get when you throw away the first ... (finitely many) elements. So a tail is a subsequence of the form x_{N}, x_{N+1}, \ldots for some N (here we threw away the first $N-1$ elements).
15. x_{1}, x_{2}, \ldots converges to x when
(a) For every $\epsilon>0$ the sequence has a tail contained in $S_{\epsilon}(x)$.
(b) $\forall_{\epsilon>0} \exists_{N} \forall_{i \geq N} D\left(x_{i}, x\right)<\epsilon$

When these equivalent properties hold then we say that x is the limit of the sequence x_{1}, x_{2}, \ldots.
The most boring convergent sequences are those that have a tail that is constant (meaning: sequences for which there exists some N such that all the x_{i} with $i \geq N$ are the same). Such a sequence obviously converges. If x is isolated, then item $12(\mathrm{~d})$ says that only boring sequences can converge to x.
However, if x is not isolated, then there are more interesting sequences that converge to x, see item $13(\mathrm{~d})$.
16. M is a discrete set when
(a) Every x in M is isolated.
(b) $\{x\}$ is open for every $x \in M$.
(c) Every set $U \subseteq M$ is open.

To show how (b) implies (c), lets take some set U. Now for every $x \in U$ take the set $\{x\}$ (you might have infinitely many of these sets because U could perhaps be an infinite set). Now take the union of all those sets and you get

$$
\bigcup_{x \in U}\{x\}
$$

By item 10 this union is an open set. But clearly, this union is just U itself.

If M is discrete then every $U \subseteq M$ is open, so if M is discrete then it makes little sense to talk about open sets. As an example, if M has finitely many elements, then M is discrete, see Example 1 in item 12.
17. A set $F \subseteq M$ is closed when
(a) If there is a sequence x_{1}, x_{2}, \ldots in F that converges to $x \in M$ then this x must be in F.
(b) If $S_{r}(x) \cap F$ is not empty for every $r>0$ then $x \in F$.
(c) If $F \bigcap U \neq \emptyset$ for every neighborhood U of x then $x \in F$.
(d) If every neighborhood of x intersects F (if every neighborhood of x has element(s) in common with F) then $x \in F$.
(e) The complement of F is open, i.e. $F^{c}=M-F$ is open.
(f) F contains all of its limit points (if x is a limit point of F then x is in F).
18. A point x is called a limit point of A when there is a sequence in $A-\{x\}$ that converges to x.
19. Notation: \bar{A} is called the closure of the set A
(a) \bar{A} is the union of A and all of its limit points.
(b) \bar{A} is the smallest closed set that contains A.
(c) \bar{A} is the intersection of all closed sets that contain A.
(d) $x \in \bar{A} \Longleftrightarrow$ every neighborhood of x intersects A.
(e) $x \in \bar{A} \Longleftrightarrow \exists$ a sequence $x_{1}, x_{2}, \ldots \in A$ that converges to x.
(f) $x \in \bar{A} \Longleftrightarrow \forall_{\epsilon>0}$ there is a point in A that is ϵ-close to x.
20. x is a limit point of A if x is in the closure of $A-\{x\}$.
21. If x_{1}, x_{2}, \ldots converges to x and y_{1}, y_{2}, \ldots converges to y, then $D\left(x_{1}, y_{1}\right), D\left(x_{2}, y_{2}\right), \ldots$ converges to $D(x, y)$.
This is Theorem 37, the proof uses the triangle inequality.
Use this fact to prove exercises $6(\mathrm{a}), 6(\mathrm{~b})$, and $6(\mathrm{c})$ on page 78 .
22. The diameter of a set A is the supremum of $\{D(x, y) \mid x, y \in A\}$.
23. If A is a set, then the diameter of A equals the diameter of \bar{A}. To prove this, you need item 21.
24. The union of finitely many closed sets is again closed.
25. The intersection of closed sets (even if you take infinitely many closed sets!) is again closed.
26. Exercise: Prove that a set with one point is closed. Then, using item 24 it follows that every finite set is closed.
27. A subset $A \subseteq M$ is called dense in M if
(a) $\bar{A}=M$
(b) For every $x \in M$ there exists a sequence $x_{1}, x_{2}, \ldots \in A$ that converges to x (see 19 e)
(c) Every non-empty open set intersects A (see 19d)

