Answers for: Sample Final for Thursday's class

1. Give the definition of:
(for (a)-(d) give the definition, not a statement about cardinalities)
(a) A function $f: A \rightarrow B$ is called injective when:
(b) A function $f: A \rightarrow B$ is called surjective when:
(c) The power set $P(A)$ of a set A is:
(d) The product $A \times B$ of two sets is the set of all:
(e) The contrapositive of a statement $p \Longrightarrow q$ is:

Answer:
(a) $f\left(a_{1}\right)=f\left(a_{2}\right) \Longrightarrow a_{1}=a_{2} \quad$ (for all $a_{1}, a_{2} \in A$)
(b) $\forall_{b \in B} \exists_{a \in A} f(a)=b$
(c) the set of all subsets of A.
(d) the set of all pairs (a, b) for all $a \in A$ and all $b \in B$.
(e) $\neg q \Longrightarrow \neg p$
2. Let $f: A \rightarrow B$ and consider the following statement:

$$
S: \quad \exists_{b \in B} \forall_{a \in A} f(a) \neq b
$$

Compute $\neg S$ (the negation of S). What does $\neg S$ say about f ?
Answer: $\forall_{b \in B} \exists_{a \in A} f(a)=b$. This says that f is onto (i.e. surjective).
3. Let $x \in \mathbb{R}$. Write down the contrapositive of the following statement:

$$
S: \quad\left(\forall_{\epsilon>0}|x|<\epsilon\right) \Longrightarrow x=0 .
$$

Is S true? (Prove or disprove).
$x \neq 0 \Longrightarrow \exists_{\epsilon>0}|x| \geq \epsilon$.
Proof: Assume $x \neq 0$. To prove: $\exists_{\epsilon>0}|x| \geq \epsilon$. Proof: Take $\epsilon=|x|$.
4. For each, simplify the cardinality to one of: $0,1,2, \ldots, \aleph_{0}, c, 2^{c}, 2^{2^{c}}, \ldots$

For the last two, justify your answer by showing your steps.
(a) $\mathbb{Q}-\mathbb{Z}: \quad \aleph_{0}(\mathbb{Q}-\mathbb{Z}$ is an infinite subset of a countably infinite set $\mathbb{Q})$
(b) $P(\mathbb{N}): \quad 2^{\aleph_{0}}=c$
(c) $\{2,2\}: 1$
(d) $\mathbb{R}^{\mathbb{N}}: \quad c^{\aleph_{0}}=\left(2^{\aleph_{0}}\right)^{\aleph_{0}}=2^{\aleph_{0} \aleph_{0}}=2^{\aleph_{0}}=c$
(e) $\mathbb{R}^{\mathbb{R}}: \quad c^{c}=\left(2^{\aleph_{0}}\right)^{c}=2^{\aleph_{0} c}=2^{c}$
5. For each of the following subsets of \mathbb{R}, mention if it is open, closed, both, or neither. For each set A that is not closed, write down its closure \bar{A} :
$\emptyset:$ both
$[0, \infty): \quad$ closed
$\mathbb{R}-\{0\}: \quad$ open, closure $=\mathbb{R}$
$(0,1) \bigcap \mathbb{Q}$: neither. Closure $=[0,1]$
$\left\{\frac{1}{1}, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \ldots\right\}=\left\{1 / n \mid n \in \mathbb{N}^{*}\right\}:$ neither. Closure $=\left\{\frac{1}{1}, \frac{1}{2}, \frac{1}{3}, \frac{1}{4} \ldots\right\} \bigcup\{0\}$.
6. Suppose that A, B are infinite sets and that $f: P(A) \rightarrow A \times B$ is injective. Must there exist an injective function from $P(A)$ to B ? (Prove or disprove).

Yes. $\mathrm{o}(P(A)) \leq \mathrm{o}(A \times B)=\mathrm{o}(A) \mathrm{o}(B)=\max (\mathrm{o}(A), \mathrm{o}(B))$ using items 2, 21, 22. If this max is $\mathrm{o}(A)$ then $\mathrm{o}(P(A)) \leq \mathrm{o}(A)$ contradicting item 7. So this \max is $\mathrm{o}(B)$ and so $\mathrm{o}(P(A)) \leq \mathrm{o}(B)$.
7. (a) Suppose that (1) for every a in A and every $\epsilon>0$ there exists b in B with $D(a, b)<\epsilon$. Then show that (2): $A \subseteq \bar{B}$.

Let $a \in A$. To prove: $a \in \bar{B}$. By item 19(f) that means showing $\forall_{\epsilon>0} \exists_{b \in B}$ with $b \epsilon$-close to a. But that is precisely what (1) says.
(b) Suppose for every $a \in A$ there is a sequence in B that converges to a. Show that $\bar{A} \subseteq \bar{B}$. (hint: first show $A \subseteq \bar{B}$).
To prove the hint, let $a \in A$, to prove $a \in \bar{B}$. We are given that there is a sequence in B that converges to a, but then $a \in \bar{B}$ by item 19(e). Hence $A \subseteq \bar{B}$. Item 19 (c) says that \bar{A} is the intersection of all closed sets that contain A, but we saw that one of those is \bar{B}, so $\bar{A} \subseteq \bar{B}$.
(c) Suppose $p \notin \bar{A}$. Show that there exists $\epsilon>0$ with $S_{\epsilon}(p) \bigcap A=\emptyset$.

One proof is to compute the negation of item 19(d). Another proof: Let U be the complement of \bar{A}. Then U is open (see item 17(e)) and $p \in U$ so by item $5(\mathrm{a})$ there exists $\epsilon>0$ with $S_{\epsilon}(p) \subseteq U$. Then $S_{\epsilon}(p) \bigcap U^{c}=\emptyset$. Now note that $A \subseteq \bar{A}=U^{c}$.
8. (a) This one is well ordered, with order type ω^{2}.
(b) This one is well ordered, with order type ω.

