Answers for: Sample Final for Thursday's class

1. Give the definition of:

(for (a)–(d) give the definition, not a statement about cardinalities)

- (a) A function $f: A \to B$ is called *injective* when:
- (b) A function $f: A \to B$ is called *surjective* when:
- (c) The power set P(A) of a set A is:
- (d) The product $A \times B$ of two sets is the set of all:
- (e) The *contrapositive* of a statement $p \Longrightarrow q$ is:

Answer:

- (a) $f(a_1) = f(a_2) \Longrightarrow a_1 = a_2$ (for all $a_1, a_2 \in A$)
- (b) $\forall_{b \in B} \exists_{a \in A} f(a) = b$
- (c) the set of all subsets of A.
- (d) the set of all pairs (a, b) for all $a \in A$ and all $b \in B$.

(e)
$$\neg q \Longrightarrow \neg p$$

2. Let $f: A \to B$ and consider the following statement:

$$S: \exists_{b \in B} \forall_{a \in A} f(a) \neq b$$

Compute $\neg S$ (the negation of S). What does $\neg S$ say about f?

Answer: $\forall_{b \in B} \exists_{a \in A} f(a) = b$. This says that f is onto (i.e. surjective).

3. Let $x \in \mathbb{R}$. Write down the *contrapositive* of the following statement:

 $S: (\forall_{\epsilon > 0} |x| < \epsilon) \implies x = 0.$

Is S true? (Prove or disprove).

 $x \neq 0 \implies \exists_{\epsilon>0} |x| \geq \epsilon.$ Proof: Assume $x \neq 0$. To prove: $\exists_{\epsilon>0} |x| \geq \epsilon$. Proof: Take $\epsilon = |x|$.

- 4. For each, simplify the cardinality to one of: $0, 1, 2, ..., \aleph_0, c, 2^c, 2^{2^c}, ...$ For the last two, justify your answer by showing your steps.
 - (a) $\mathbb{Q} \mathbb{Z}$: $\aleph_0 (\mathbb{Q} \mathbb{Z} \text{ is an infinite subset of a countably infinite set } \mathbb{Q})$
 - (b) $P(\mathbb{N})$: $2^{\aleph_0} = c$
 - (c) $\{2,2\}$: 1
 - (d) $\mathbb{R}^{\mathbb{N}}: c^{\aleph_0} = (2^{\aleph_0})^{\aleph_0} = 2^{\aleph_0 \aleph_0} = 2^{\aleph_0} = c$
 - (e) $\mathbb{R}^{\mathbb{R}}$: $c^{c} = (2^{\aleph_{0}})^{c} = 2^{\aleph_{0}c} = 2^{c}$

5. For each of the following subsets of \mathbb{R} , mention if it is open, closed, both, or neither. For each set A that is not closed, write down its closure \overline{A} :

$$\begin{split} &\emptyset: \quad \text{both} \\ &[0,\infty): \quad \text{closed} \\ &\mathbb{R} - \{0\}: \quad \text{open, closure} = \mathbb{R} \\ &(0,1) \bigcap \mathbb{Q}: \quad \text{neither. Closure} = [0,1] \\ &\{\frac{1}{1}, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \ldots\} = \{1/n \mid n \in \mathbb{N}^*\}: \quad \text{neither. Closure} = \{\frac{1}{1}, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \ldots\} \bigcup \{0\}. \end{split}$$

6. Suppose that A, B are infinite sets and that $f : P(A) \to A \times B$ is injective. Must there exist an injective function from P(A) to B? (Prove or disprove).

Yes. $o(P(A)) \leq o(A \times B) = o(A)o(B) = \max(o(A), o(B))$ using items 2, 21, 22. If this max is o(A) then $o(P(A)) \leq o(A)$ contradicting item 7. So this max is o(B) and so $o(P(A)) \leq o(B)$.

7. (a) Suppose that (1) for every a in A and every $\epsilon > 0$ there exists b in B with $D(a,b) < \epsilon$. Then show that (2): $A \subseteq \overline{B}$.

Let $a \in A$. To prove: $a \in \overline{B}$. By item 19(f) that means showing $\forall_{\epsilon>0} \exists_{b\in B}$ with $b \epsilon$ -close to a. But that is precisely what (1) says.

(b) Suppose for every $a \in A$ there is a sequence in B that converges to a. Show that $\overline{A} \subseteq \overline{B}$. (hint: first show $A \subseteq \overline{B}$).

To prove the hint, let $a \in A$, to prove $a \in \overline{B}$. We are given that there is a sequence in B that converges to a, but then $a \in \overline{B}$ by item 19(e). Hence $A \subseteq \overline{B}$. Item 19(c) says that \overline{A} is the intersection of all closed sets that contain A, but we saw that one of those is \overline{B} , so $\overline{A} \subseteq \overline{B}$.

(c) Suppose $p \notin \overline{A}$. Show that there exists $\epsilon > 0$ with $S_{\epsilon}(p) \cap A = \emptyset$.

One proof is to compute the negation of item 19(d). Another proof: Let U be the complement of \overline{A} . Then U is open (see item 17(e)) and $p \in U$ so by item 5(a) there exists $\epsilon > 0$ with $S_{\epsilon}(p) \subseteq U$. Then $S_{\epsilon}(p) \cap U^{c} = \emptyset$. Now note that $A \subseteq \overline{A} = U^{c}$.

- 8. (a) This one is well ordered, with order type ω^2 .
 - (b) This one is well ordered, with order type ω .