Sample Final for Thursday's class

1. Give the definition of:
(for (a)-(d) give the definition, not a statement about cardinalities)
(a) A function $f: A \rightarrow B$ is called injective when:
(b) A function $f: A \rightarrow B$ is called surjective when:
(c) The power set $P(A)$ of a set A is:
(d) The product $A \times B$ of two sets is the set of all:
(e) The contrapositive of a statement $p \Longrightarrow q$ is:

Answer:
2. Let $f: A \rightarrow B$ and consider the following statement:

$$
S: \quad \exists_{b \in B} \forall_{a \in A} f(a) \neq b
$$

Compute $\neg S$ (the negation of S). What does $\neg S$ say about f ?
3. Let $x \in \mathbb{R}$. Write down the contrapositive of the following statement:

$$
S: \quad\left(\forall_{\epsilon>0}|x|<\epsilon\right) \Longrightarrow x=0 .
$$

Is S true? (Prove or disprove).
4. For each, simplify the cardinality to one of: $0,1,2, \ldots, \aleph_{0}, c, 2^{c}, 2^{2^{c}}, \ldots$

For the last two, justify your answer by showing your steps.
(a) $\mathbb{Q}-\mathbb{Z}$
(b) $P(\mathbb{N})$
(c) $\{2,2\}$
(d) $\mathbb{R}^{\mathbb{N}}$
(e) $\mathbb{R}^{\mathbb{R}}$
5. For each of the following subsets of \mathbb{R}, mention if it is open, closed, both, or neither. For each set A that is not closed, write down its closure \bar{A} :
\emptyset
$[0, \infty)$
$\mathbb{R}-\{0\}$
$(0,1) \cap \mathbb{Q}$
$\left\{\frac{1}{1}, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \ldots\right\}=\left\{1 / n \mid n \in \mathbb{N}^{*}\right\}$
6. Suppose that A, B are infinite sets and that $f: P(A) \rightarrow A \times B$ is injective. Must there exist an injective function from $P(A)$ to B ? (Prove or disprove).
7. Let M be a metric space, and let A and B be subsets of M.
(a) Suppose that for every a in A and every $\epsilon>0$ there exists b in B with $D(a, b)<\epsilon$. Then show that $A \subseteq \bar{B}$.
(b) Suppose for every $a \in A$ there is a sequence in B that converges to a. Show that $\bar{A} \subseteq \bar{B}$. (hint: first show $A \subseteq \bar{B}$).
(c) Suppose $p \notin \bar{A}$. Show that there exists $\epsilon>0$ with $S_{\epsilon}(p) \bigcap A=\emptyset$.
8. Let S be the set $\mathbb{N} \times \mathbb{N}$.
(a) We will use the following ordering on S :
$\left(x_{1}, y_{1}\right) \leq\left(x_{2}, y_{2}\right)$ is true when: $y_{1}<y_{2}$ or $\left(y_{1}=y_{2}\right.$ and $\left.x_{1} \leq x_{2}\right)$. Is this is a well-ordering on S ? If so, what is its order type (write it as an ordinal number).
(b) This time we will use another ordering, now $\left(x_{1}, y_{1}\right) \leq\left(x_{2}, y_{2}\right)$ when: $x_{1}+y_{1}<x_{2}+y_{2}$ or $\left(x_{1}+y_{1}=x_{2}+y_{2}\right.$ and $\left.x_{1} \leq x_{2}\right)$.
Is a well-ordering on S ? If so, what is its order type (write it as an ordinal number).
Hint for both: Draw the set S on scratch paper, one for part (a), and another for part (b), then pick some points and indicate what the nextsmallest point is. This way you can visualize the ordering.

