Sample Final for Thursday's class

1. Give the definition of:

(for (a)–(d) give the definition, not a statement about cardinalities)

- (a) A function $f : A \to B$ is called *injective* when:
- (b) A function $f: A \to B$ is called *surjective* when:
- (c) The power set P(A) of a set A is:
- (d) The product $A \times B$ of two sets is the set of all:
- (e) The *contrapositive* of a statement $p \Longrightarrow q$ is:

Answer:

2. Let $f: A \to B$ and consider the following statement:

$$S: \exists_{b \in B} \forall_{a \in A} f(a) \neq b$$

Compute $\neg S$ (the negation of S). What does $\neg S$ say about f?

3. Let $x \in \mathbb{R}$. Write down the *contrapositive* of the following statement:

$$S: (\forall_{\epsilon>0} |x| < \epsilon) \implies x = 0.$$

Is S true? (Prove or disprove).

- 4. For each, simplify the cardinality to one of: 0, 1, 2, ..., ℵ₀, c, 2^c, 2^{2^c}, ...
 For the last two, justify your answer by showing your steps.
 - (a) $\mathbb{Q} \mathbb{Z}$
 - (b) $P(\mathbb{N})$
 - (c) $\{2,2\}$
 - (d) $\mathbb{R}^{\mathbb{N}}$
 - (e) $\mathbb{R}^{\mathbb{R}}$

- 5. For each of the following subsets of \mathbb{R} , mention if it is open, closed, both, or neither. For each set A that is not closed, write down its closure \overline{A} :
 - \emptyset [0, \infty) $\mathbb{R} - \{0\}$ (0, 1) $\bigcap \mathbb{Q}$ $\{\frac{1}{1}, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \ldots\} = \{1/n \mid n \in \mathbb{N}^*\}$

6. Suppose that A, B are infinite sets and that $f : P(A) \to A \times B$ is injective. Must there exist an injective function from P(A) to B? (Prove or disprove).

- 7. Let M be a metric space, and let A and B be subsets of M.
 - (a) Suppose that for every a in A and every $\epsilon > 0$ there exists b in B with $D(a,b) < \epsilon$. Then show that $A \subseteq \overline{B}$.
 - (b) Suppose for every $a \in A$ there is a sequence in B that converges to a. Show that $\overline{A} \subseteq \overline{B}$. (hint: first show $A \subseteq \overline{B}$).
 - (c) Suppose $p \notin \overline{A}$. Show that there exists $\epsilon > 0$ with $S_{\epsilon}(p) \cap A = \emptyset$.
- 8. Let S be the set $\mathbb{N} \times \mathbb{N}$.
 - (a) We will use the following ordering on S: $(x_1, y_1) \leq (x_2, y_2)$ is true when: $y_1 < y_2$ or $(y_1 = y_2 \text{ and } x_1 \leq x_2)$. Is this is a well-ordering on S? If so, what is its order type (write it as an ordinal number).
 - (b) This time we will use another ordering, now $(x_1, y_1) \leq (x_2, y_2)$ when: $x_1 + y_1 < x_2 + y_2$ or $(x_1 + y_1 = x_2 + y_2 \text{ and } x_1 \leq x_2)$. Is a well-ordering on S? If so, what is its order type (write it as an ordinal number).

Hint for both: Draw the set S on scratch paper, one for part (a), and another for part (b), then pick some points and indicate what the next-smallest point is. This way you can visualize the ordering.