Sample questions, Intro Advanced Math

1. Simplify the following cardinal numbers to the point where they look like $0, 1, 2, \ldots$, or \aleph_0 , or c, or 2^c , or $2^{(2^c)}$, etc.

 $o(\{3,3,3\})$ $o(P(\emptyset))$ $o(\mathbb{Q})$ $o(\mathbb{R} \times \mathbb{N})$ $\aleph_0^{\aleph_0}$ $o(P(\mathbb{R}))$ $o(\mathbb{R}^{\mathbb{N}})$

Does there exist an injective function from $\mathbb{R}^{\mathbb{N}}$ to \mathbb{R} ?

- 2. For each of the following sets (in the metric space \mathbb{R}), mention if it is open, closed, both, or neither. Also, for each set A that is not closed, write down what its closure \overline{A} is:
 - $(0,1) \bigcup \{2\}$ \emptyset $\mathbb{R} \mathbb{Z}.$
- 3. Give the definitions:
 - (a) A function $f: A \to B$ is **injective** (same as "one-to-one") when:
 - (b) Sets A and B have the **same cardinality** when:

- 4. If $f : A \to B$ and $g : B \to C$ are both **injective** (exercise 3a) then prove that the composition $g \circ f : A \to C$ is also **injective**.
- 5. Using **only** the definition from exercise 3b, show that $\mathbb{N} = \{0, 1, 2, 3, ...\}$ and $\mathbb{N}^* = \{1, 2, 3, ...\}$ have the **same cardinality**.
- 6. Let A, B be sets and let $C = A \times B$. Show that **at least one** of these must be true:
 - (1) C is a **finite** set.

or

(2) There exists a **bijection** from A to C.

or

- (3) There exists a **bijection** from B to C.
- 7. Let M be a metric space and A be a subset of M. We say that p is an **interior point of** A if there exists an open set U such that $p \in U$ and $U \subseteq A$. Let A_{int} be the set of all interior points of A. Show that A_{int} is an open set (partial credit if you prove: A open $\Longrightarrow A_{int} = A$).
- 8. Proving a calculus formula by induction. I'll write f and g instead of f(x) and g(x) to keep the notation short. Lets say the calculus book proved
 - (a) 1' = 0
 - (b) x' = 1
 - (c) and the product rule: $(f \cdot g)' = f' \cdot g + f \cdot g'$.

But lets say the book did not yet prove that $(x^n)' = nx^{n-1}$, it will be our task to prove that. As an example, lets try n = 2:

We can compute (xx)' with the product rule $x' \cdot x + x \cdot x' = 1x + x1 = 2x$. Now lets try n = 3:

Compute $(x^3)' = (x^2x)'$ with the product rule as $(x^2)' \cdot x + x^2 \cdot x' = (2x) \cdot x + x^2 \cdot 1 = 3x^2$.

Do the same for $(x^4)' = (x^3x)' = \dots$ and we start to see a pattern. Now lets really prove that $(x^n)' = nx^{n-1}$ is true.

Denote $L(n) = (x^n)'$ and $R(n) = nx^{n-1}$ and let P(n) be the statement L(n) = R(n) that we want to prove. Now use induction to prove that P(n) is true for all $n \in \mathbb{N}$.