Sample questions, Intro Advanced Math

1. Simplify the following cardinal numbers to the point where they look like $0,1,2, \ldots$, or \aleph_{0}, or c, or 2^{c}, or $2^{\left(2^{c}\right)}$, etc.
```
o({3,3,3})
o(P(\emptyset))
o(\mathbb{Q})
o(\mathbb{R}\times\mathbb{N})
\aleph
o(P(\mathbb{R}))
o(\mathbb{R}
```

Does there exist an injective function from $\mathbb{R}^{\mathbb{N}}$ to \mathbb{R} ?
2. For each of the following sets (in the metric space \mathbb{R}), mention if it is open, closed, both, or neither. Also, for each set A that is not closed, write down what its closure \bar{A} is:
$(0,1) \bigcup\{2\}$
\mathbb{Q}
\emptyset
$\mathbb{R}-\mathbb{Z}$.
3. Give the definitions:
(a) A function $f: A \rightarrow B$ is injective (same as "one-to-one") when:
(b) Sets A and B have the same cardinality when:
4. If $f: A \rightarrow B$ and $g: B \rightarrow C$ are both injective (exercise 3a) then prove that the composition $g \circ f: A \rightarrow C$ is also injective.
5. Using only the definition from exercise 3 b , show that $\mathbb{N}=\{0,1,2,3, \ldots\}$ and $\mathbb{N}^{*}=\{1,2,3, \ldots\}$ have the same cardinality.
6. Let A, B be sets and let $C=A \times B$. Show that at least one of these must be true:
(1) C is a finite set.
or
(2) There exists a bijection from A to C.
or
(3) There exists a bijection from B to C.
7. Let M be a metric space and A be a subset of M. We say that p is an interior point of A if there exists an open set U such that $p \in U$ and $U \subseteq A$. Let $A_{\text {int }}$ be the set of all interior points of A. Show that A_{int} is an open set (partial credit if you prove: A open $\Longrightarrow A_{\mathrm{int}}=A$).
8. Proving a calculus formula by induction. I'll write f and g instead of $f(x)$ and $g(x)$ to keep the notation short. Lets say the calculus book proved
(a) $1^{\prime}=0$
(b) $x^{\prime}=1$
(c) and the product rule: $(f \cdot g)^{\prime}=f^{\prime} \cdot g+f \cdot g^{\prime}$.

But lets say the book did not yet prove that $\left(x^{n}\right)^{\prime}=n x^{n-1}$, it will be our task to prove that. As an example, lets try $n=2$:
We can compute $(x x)^{\prime}$ with the product rule $x^{\prime} \cdot x+x \cdot x^{\prime}=1 x+x 1=2 x$. Now lets try $n=3$:
Compute $\left(x^{3}\right)^{\prime}=\left(x^{2} x\right)^{\prime}$ with the product rule as $\left(x^{2}\right)^{\prime} \cdot x+x^{2} \cdot x^{\prime}=$ $(2 x) \cdot x+x^{2} \cdot 1=3 x^{2}$.
Do the same for $\left(x^{4}\right)^{\prime}=\left(x^{3} x\right)^{\prime}=\ldots$ and we start to see a pattern. Now lets really prove that $\left(x^{n}\right)^{\prime}=n x^{n-1}$ is true.
Denote $L(n)=\left(x^{n}\right)^{\prime}$ and $R(n)=n x^{n-1}$ and let $P(n)$ be the statement $L(n)=R(n)$ that we want to prove. Now use induction to prove that $P(n)$ is true for all $n \in \mathbb{N}$.

