Final, Intro Advanced Math, ANSWERS

1. Simplify the following cardinal numbers to the point where they look like $0,1,2, \ldots$, or \aleph_{0}, or c, or 2^{c}, or $2^{\left(2^{c}\right)}$, etc.
$o(\{3,3,3\})=1$
$o(P(\emptyset)) \quad=2^{0}=1$
$o(\mathbb{Q}) \quad=\aleph_{0}$
$o(\mathbb{R} \times \mathbb{N}) \quad=c \cdot \aleph_{0}=c$
$\aleph_{0}^{\aleph_{0}} \quad=c$ (explanation: $\left.2^{\aleph_{0}} \leq \aleph_{0}^{\aleph_{0}} \leq c^{\aleph_{0}}=2^{\aleph_{0} \aleph_{0}}=2^{\aleph_{0}}\right)$
$o(P(\mathbb{R}))=2^{c}$
$o\left(\mathbb{R}^{\mathbb{N}}\right) \quad=c\left(\right.$ explanation: $\left.c^{\aleph_{0}}=2^{\aleph_{0} \aleph_{0}}=2^{\aleph_{0}}\right)$
Does there exist an injective function from $\mathbb{R}^{\mathbb{N}}$ to \mathbb{R} ?
Yes (both have cardinality c so there is even a bijection).
2. For each of the following sets (in the metric space \mathbb{R}), mention if it is open, closed, both, or neither. Also, for each set A that is not closed, write down what its closure \bar{A} is:
$(0,1) \bigcup\{2\}$ Neither. $[0,1] \bigcup\{2\}$.
$\mathbb{Q} \quad$ Neither. \mathbb{R}.
$\emptyset \quad$ Both. \emptyset
$\mathbb{R}-\mathbb{Z} \quad$ Open. \mathbb{R}.
3. Give the definitions:
(a) A function $f: A \rightarrow B$ is injective (same as "one-to-one") when: $f\left(a_{1}\right)=f\left(a_{2}\right) \Longrightarrow a_{1}=a_{2}\left(\right.$ for all $\left.a_{1}, a_{2} \in A\right)$
(b) Sets A and B have the same cardinality when:

When there exists a bijection from A to B.
(Note: this is item (1) in List of facts for Chapter 2).
4. If $f: A \rightarrow B$ and $g: B \rightarrow C$ are both injective (exercise 3a) then prove that the composition $g \circ f: A \rightarrow C$ is also injective.
Let $a_{1}, a_{2} \in A$ and assume $g\left(f\left(a_{1}\right)\right)=g\left(f\left(a_{2}\right)\right)$. To prove: $a_{1}=a_{2}$.
Given: g is injective so $g\left(b_{1}\right)=g\left(b_{2}\right) \Longrightarrow b_{1}=b_{2}$ for any $b_{1}, b_{2} \in B$. Applying that to $b_{1}=f\left(a_{1}\right), b_{2}=f\left(a_{2}\right)$ gives $f\left(a_{1}\right)=f\left(a_{2}\right)$.
Then the statement in Exercise 3(a) gives $a_{1}=a_{2}$.
5. Using only the definition from exercise 3 b , show that $\mathbb{N}=\{0,1,2,3, \ldots\}$ and $\mathbb{N}^{*}=\{1,2,3, \ldots\}$ have the same cardinality.
To prove: there exists a bijection from \mathbb{N} to \mathbb{N}^{*}.
Proof: take the function $f(n):=n+1$.
6. Let A, B be sets and let $C=A \times B$. Show that at least one of these must be true:
(1) C is a finite set.
or (2) There exists a bijection from A to C.
or (3) There exists a bijection from B to C.
If not (1), then C is infinite and $o(C)=o(A) o(B)=\max (o(A), o(B))$ by item 22 . Then $o(C)$ equals $o(A)$ or $o(B)$, hence (2) or (3).
7. Let M be a metric space and A be a subset of M. We say that p is an interior point of A if there exists an open set U such that $p \in U$ and $U \subseteq A$. Let $A_{\text {int }}$ be the set of all interior points of A. Show that $A_{\text {int }}$ is an open set (partial credit if you prove: A open $\Longrightarrow A_{\text {int }}=A$).
Let $p \in A_{\text {int }}$.
To prove (see items 6 and $5(\mathrm{c})$): $A_{\text {int }}$ contains a neighborhood of p. The exercise tells us that A contains an open subset U with $p \in U$. This U is a neighborhood of p (see item 9(b)). Remains to prove: $U \subseteq A_{\text {int }}$. Let $x \in U \subseteq A$. To prove: $x \in A_{\text {int }}$. Since U is open, x meets the definition of "interior point" and so $x \in A_{\text {int }}$.
8. Given:
(a) $1^{\prime}=0$
(b) $x^{\prime}=1$
(c) and the product rule: $(f \cdot g)^{\prime}=f^{\prime} \cdot g+f \cdot g^{\prime}$.

Statement $P(n)$ says $\left(x^{n}\right)^{\prime}=n x^{n-1}$. Prove $P(n)$ for all $n \in \mathbb{N}$.
Watch video "Proofs by Induction" at time 34:00, it says we have to do two things

- Step 1: Verify $P(0):\left(x^{0}\right)^{\prime}=0 x^{0-1}$.

True, the left-hand-side $\left(x^{0}\right)^{\prime}=1^{\prime}$ is 0 by (a).

- Step 2: Prove $P(n) \Longrightarrow P(n+1)$ for all n.

Assume $P(n)$. To prove: $P(n+1)$, which says $\left(x^{n+1}\right)^{\prime}=(n+1) x^{n}$. Proof: $\left(x^{n+1}\right)^{\prime}=\left(x^{n} x\right)^{\prime}=[$ use (c)]
$=\left(x^{n}\right)^{\prime} x+x^{n} x^{\prime}=[$ use $P(n)]=n x^{n-1} x+x^{n} x^{\prime}=[$ use (b)]
$=n x^{n-1} x+x^{n}=n x^{n}+x^{n}=(n+1) x^{n}$.

