Final, Intro Advanced Math, ANSWERS

1. Simplify the following cardinal numbers to the point where they look like $0, 1, 2, \ldots$, or \aleph_0 , or c, or 2^c , or $2^{(2^c)}$, etc.

 $\begin{aligned} o(\{3,3,3\}) &= 1\\ o(P(\emptyset)) &= 2^0 = 1\\ o(\mathbb{Q}) &= \aleph_0\\ o(\mathbb{R} \times \mathbb{N}) &= c \cdot \aleph_0 = c\\ \aleph_0^{\aleph_0} &= c \text{ (explanation: } 2^{\aleph_0} \le \aleph_0^{\aleph_0} \le c^{\aleph_0} = 2^{\aleph_0 \aleph_0} = 2^{\aleph_0})\\ o(P(\mathbb{R})) &= 2^c\\ o(\mathbb{R}^{\mathbb{N}}) &= c \text{ (explanation: } c^{\aleph_0} = 2^{\aleph_0 \aleph_0} = 2^{\aleph_0}) \end{aligned}$

Does there exist an injective function from $\mathbb{R}^{\mathbb{N}}$ to \mathbb{R} ? Yes (both have cardinality *c* so there is even a bijection).

2. For each of the following sets (in the metric space \mathbb{R}), mention if it is open, closed, both, or neither. Also, for each set A that is not closed, write down what its closure \overline{A} is:

- 3. Give the definitions:
 - (a) A function $f: A \to B$ is **injective** (same as "one-to-one") when:

 $f(a_1) = f(a_2) \Longrightarrow a_1 = a_2 \text{ (for all } a_1, a_2 \in A)$

(b) Sets A and B have the same cardinality when:

When there exists a bijection from A to B. (Note: this is item (1) in List of facts for Chapter 2).

4. If $f : A \to B$ and $g : B \to C$ are both **injective** (exercise 3a) then prove that the composition $g \circ f : A \to C$ is also **injective**.

Let $a_1, a_2 \in A$ and assume $g(f(a_1)) = g(f(a_2))$. To prove: $a_1 = a_2$. Given: g is injective so $g(b_1) = g(b_2) \Longrightarrow b_1 = b_2$ for any $b_1, b_2 \in B$. Applying that to $b_1 = f(a_1), b_2 = f(a_2)$ gives $f(a_1) = f(a_2)$. Then the statement in Exercise 3(a) gives $a_1 = a_2$. 5. Using **only** the definition from exercise 3b, show that $\mathbb{N} = \{0, 1, 2, 3, ...\}$ and $\mathbb{N}^* = \{1, 2, 3, ...\}$ have the **same cardinality**.

To prove: there exists a bijection from \mathbb{N} to \mathbb{N}^* . Proof: take the function f(n) := n + 1.

- 6. Let A, B be sets and let $C = A \times B$. Show that **at least one** of these must be true:
 - (1) C is a **finite** set.
 - or (2) There exists a **bijection** from A to C.
 - or (3) There exists a **bijection** from B to C.

If not (1), then C is infinite and $o(C) = o(A)o(B) = \max(o(A), o(B))$ by item 22. Then o(C) equals o(A) or o(B), hence (2) or (3).

7. Let M be a metric space and A be a subset of M. We say that p is an **interior point of** A if there exists an open set U such that $p \in U$ and $U \subseteq A$. Let A_{int} be the set of all interior points of A. Show that A_{int} is an open set (partial credit if you prove: A open $\Longrightarrow A_{int} = A$).

Let $p \in A_{\text{int}}$.

To prove (see items 6 and 5(c)): A_{int} contains a neighborhood of p. The exercise tells us that A contains an open subset U with $p \in U$. This U is a neighborhood of p (see item 9(b)). Remains to prove: $U \subseteq A_{int}$. Let $x \in U \subseteq A$. To prove: $x \in A_{int}$. Since U is open, xmeets the definition of "interior point" and so $x \in A_{int}$.

- 8. Given:
 - (a) 1' = 0
 - (b) x' = 1
 - (c) and the product rule: $(f \cdot g)' = f' \cdot g + f \cdot g'$.

Statement P(n) says $(x^n)' = nx^{n-1}$. Prove P(n) for all $n \in \mathbb{N}$. Watch video "Proofs by Induction" at time 34:00, it says we have to do two things

- Step 1: Verify P(0): $(x^0)' = 0x^{0-1}$. True, the left-hand-side $(x^0)' = 1'$ is 0 by (a).
- Step 2: Prove $P(n) \Longrightarrow P(n+1)$ for all n. Assume P(n). To prove: P(n+1), which says $(x^{n+1})' = (n+1)x^n$. Proof: $(x^{n+1})' = (x^n x)' = [\text{use (c)}]$ $= (x^n)'x + x^n x' = [\text{use } P(n)] = nx^{n-1}x + x^n x' = [\text{use (b)}]$ $= nx^{n-1}x + x^n = nx^n + x^n = (n+1)x^n$.