The test should be short enough to finish on time, but if not, you need to turn in at least Ex 1 and Ex 2 by 10:45 am EST.

- 1. In Ex 1 you do not need to give proofs/examples/explanations:
 - (a) In the metric space $M = \mathbb{Z}$ take the set $A = \{0\}$.
 - i. A is open in M: True/False
 - ii. A is closed in M: True/False
 - (b) In the metric space $M = \mathbb{R}$ take the set $A = \{0\}$.
 - i. A is open in M: True/False
 - ii. A is closed in M: True/False
 - (c) Let $M = \mathbb{R}$ and $A \subseteq M$ and suppose that

$$\{\frac{1}{1}, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \frac{1}{5}, \frac{1}{6}, \ldots\} \subseteq A$$

and $0 \notin A$. Then

i. A is closed in M: True/False/NI

ii. A is open in M: True/False/NI

Note: NI means "Not enough Information was given to decide for certain" (in other words: there are examples where it's True, and there are examples where it's False).

- (d) Let M be any metric space, and let A = M. Then A is closed in M: True/False/NI.
- (e) Let M be a metric space, A a subset of M. Suppose that A is not open. Then A is closed: True/False/NI.
- 2. Let *M* be a metric space, and suppose that the sequence x_1, x_2, x_3, \ldots converges to *x*. Suppose that *U* is open and that $x \in U$. Prove that $U \cap \{x_1, x_2, x_3, \ldots\} \neq \emptyset$.
- 3. Let M be a metric space and let $a \in M$. Let $U = \{x \in M \mid D(a, x) > 1\}$. Prove that U is open.

(Note: a is a fixed point, and U is the set of all points in M that have distance > 1 from that point a)

List of facts for Chapter 4, shortened version for use with test 3.

- 1. A metric space M is set with a distance function with the following properties (for all $a, b, c \in M$): D(a, a) = 0, D(a, b) > 0 whenever $a \neq b$, D(b, a) = D(a, b), and the triangle inequality: $D(a, c) \leq D(a, b) + D(b, c)$.
- 2. $S_r(x)$ is the **open ball** with radius r and center x. $S_r(x) = \{p \in M | D(x, p) < r\}$. So this is the set of all points you can reach if you start from x and then travel a distance that is *less than* r.
- 3. We say that p and x are r-close when D(p, x) < r. So $S_r(x)$ is the set of all points that are r-close to x.
- 4. Any set that contains $S_r(x)$ for some r > 0 is called a **neighborhood** of x. So a set U is a neighborhood of x when there exists some positive r such that all points that are r-close to x are in the set U.
- 5. Let U be a subset of M. The following statements are **equivalent**:
 - (a) $\exists_{r>0} S_r(x) \subseteq U$
 - (b) U is a neighborhood of x
 - (c) U contains a neighborhood of x.
- 6. A set $U \subseteq M$ is **open** when property 5(a)(b)(c) is true for every x in U.
- 7. Note: a neighborhood of x is **not the same** as an open set, because if we want to check that U is an open set then we need to check property 5(a) for *every* element of U. Whereas to check if U is a neighborhood of x, we only have to check property 5(a) for one element (namely x).
- 8. The sets \emptyset and M are always open (even if M does not "look" open. To understand this, selecting M means selecting *all points* to be considered. Then all *r*-close points to any x in M are automatically in M).
- 9. An open neighborhood is (these conditions are equivalent):
 - (a) A neighborhood of x that happens to be an open set.
 - (b) An open set that happens to contain x.
- 10. Any union of open sets is always open (even infinitely many sets!).
- 11. The intersection of **finitely many** open sets is again open.
- 12. x is an **isolated point** when:
 - (a) $\{x\}$ is open
 - (b) There is a neighborhood of x that contains just x and no other elements.
 - (c) $\exists_{r>0} S_r(x) = \{x\}$
 - (d) A sequence x_1, x_2, \ldots in M can only converge to x when there is some N such that all $x_i = x$ for all $i \ge N$. In other words, when there is some tail x_N, x_{N+1}, \ldots of your sequence that equals x, x, \ldots

13. x is **not isolated** when

- (a) $\{x\}$ is not open.
- (b) Every neighborhood of x will contain more elements than just x.
- (c) For every r > 0 the set $S_r(x)$ contains more than just x.
- (d) There exists a sequence x_1, x_2, \ldots in M that converges to x but where $x_n \neq x$ for every n(To produce such a sequence, do the following: for every n, the set $S_{\frac{1}{n}}(x) - \{x\}$ is not empty by part (c), so we can choose some x_n in $S_{\frac{1}{n}}(x) - \{x\}$. Then $x_n \neq x$ but $D(x_n, x) < \frac{1}{n}$ and therefore x_1, x_2, \ldots converges to x.)
- 14. Let x_1, x_2, \ldots be a sequence. A **tail** is what you get when you throw away the first \ldots (finitely many) elements. So a tail is a subsequence of the form x_N, x_{N+1}, \ldots for some N (here we threw away the first N-1 elements).
- 15. x_1, x_2, \ldots converges to x when
 - (a) For every $\epsilon > 0$ the sequence has a tail contained in $S_{\epsilon}(x)$.
 - (b) $\forall_{\epsilon>0} \exists_N \forall_{i\geq N} D(x_i, x) < \epsilon$

When these equivalent properties hold then we say that x is the limit of the sequence x_1, x_2, \ldots

The most boring convergent sequences are those that have a tail that is constant. Such a sequence obviously converges. If x is isolated, then item 12(d) says that only boring sequences can converge to x.

However, if x is not isolated, then there are more interesting sequences that converge to x, see item 13(d).

- 16. M is **discrete** when
 - (a) Every x in M is isolated.
 - (b) $\{x\}$ is open for every $x \in M$.
 - (c) Every set $U \subseteq M$ is open.
- 17. A set $F \subseteq M$ is closed when
 - (a) If a sequence x_1, x_2, \ldots in F converges to x then x must be in F.
 - (b) If $S_r(x) \cap F$ is not empty for every r > 0 then $x \in F$.
 - (c) If $F \cap U \neq \emptyset$ for every neighborhood U of x then $x \in F$.
 - (d) If every neighborhood of x intersects F (if every neighborhood of x has element(s) in common with F) then $x \in F$.
 - (e) The complement of F is open, i.e. $F^c = M F$ is open.
 - (f) F contains all of its limit points (x is a limit point of $F \Longrightarrow x \in F$).

- 18. A point x is called a **limit point** of A if there is a sequence in $A \{x\}$ that converges to x.
- 19. \overline{A} is called the **closure** of the set A.
 - (a) \overline{A} is the union of A and all of its limit points.
 - (b) \overline{A} is the smallest closed set that contains A.
 - (c) \overline{A} is the intersection of all closed sets that contain A.
 - (d) $x \in \overline{A} \iff$ every neighborhood of x intersects A.
 - (e) $x \in \overline{A} \iff \exists$ a sequence $x_1, x_2, \ldots \in A$ that converges to x.
 - (f) $x \in \overline{A} \iff \forall_{\epsilon>0}$ there is a point in A that is ϵ -close to x.
- 20. x is a **limit point** of A if x is in the closure of $A \{x\}$.
- 21. If x_1, x_2, \ldots converges to x and y_1, y_2, \ldots converges to y, then $D(x_1, y_1), D(x_2, y_2), \ldots$ converges to D(x, y).
- 22. The diameter of a set A is the supremum of $\{D(x, y) | x, y \in A\}$.
- 23. If A is a set, then the diameter of A equals the diameter of \overline{A} . To prove this, you need item 21.
- 24. The union of *finitely many* closed sets is again closed.
- 25. The intersection of closed sets (even if you take infinitely many closed sets!) is again closed.