Answers to Test 3 Ex 1. April 16, 2020.

1. In Ex 1 you do not need to give proofs/examples/explanations:
(a) In the metric space $M=\mathbb{Z}$ take the set $A=\{0\}$.
i. A is open in M : True/False

Answer in 4.2 video $\# 1$ at time 21:00.
Also in 4.2 video $\# 3$ at time 5:00.
ii. A is closed in M : True/False

Answer in video $4.3 \# 1$ time 15:40.
(b) In the metric space $M=\mathbb{R}$ take the set $A=\{0\}$.
i. A is open in M : True/False

Answer in video 4.2 \#3 at time 9:30.
Also in video "Help with HW from 4.1 and 4.2 " at time 25:00.
Also in video "Help for second set of HW for Section 4.2" at time 21:30.
ii. A is closed in M : True/False

Answer in video $4.3 \# 1$ time 15:40
(c) Let $M=\mathbb{R}$ and $A \subseteq M$ and suppose that

$$
\left\{\frac{1}{1}, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \frac{1}{5}, \frac{1}{6}, \ldots\right\} \subseteq A
$$

and $0 \notin A$. Then
i. A is closed in M : True/False/NI

Answer in video $4.3 \# 3$ time 14:05 (different example but same proof)
Also in "video to answer to the sample test questions related to section 4.3" at time 6:50.
ii. A is open in M : True/False/NI

NI: Such A could be open (e.g. \mathbb{R}), or not open (e.g. \mathbb{Q}).
For examples see:
Video 4.2 \#1 at time 39:00.
Video 4.2 \#3 at time 18:30.
Note: NI means "Not enough Information was given to decide for certain" (in other words: there are examples where it's True, and there are examples where it's False).
(d) Let M be any metric space, and let $A=M$.

Then A is closed in M : True/False/NI.
Answer in video $4.3 \# 1$ at time 32:20.
(e) Let M be a metric space, A a subset of M. Suppose that A is not open. Then A is closed: True/False/NI.
Answer in many videos:
4.3 \#1 time 15:40
"... sample test questions related to section 4.2" at time 8:00
"... sample test questions related to section 4.3 " right at the beginning. Same video at time 20:40.
2. Let M be a metric space, and suppose that the sequence $x_{1}, x_{2}, x_{3}, \ldots$ converges to x. Suppose that U is open and that $x \in U$.
Prove that $U \bigcap\left\{x_{1}, x_{2}, x_{3}, \ldots\right\} \neq \emptyset$.
Proof 1: $x \in U$ and U open, so from the definition of open (in item 6 and $5(\mathrm{a}))$ there is some $r>0$ with $S_{r}(x) \subseteq U$. Then from the definition of "converges" (in item 15(a)) the sequence has a tail (i.e. something that looks like $x_{N}, x_{N+1}, x_{N+2}, \ldots$ for some $\left.N\right)$ inside $S_{r}(x) \subseteq U$. But that tail is also inside $\left\{x_{1}, x_{2}, x_{3}, \ldots\right\}$, so both U and $\left\{x_{1}, x_{2}, x_{3}, \ldots\right\}$ contain that tail, and so the intersection is $\neq \emptyset$.
Proof 2: You can also prove this by contradiction: if you assume that $U \bigcap\left\{x_{1}, x_{2}, x_{3}, \ldots\right\}=\emptyset$ (then T.P. a contradiction) then x_{1}, x_{2}, \ldots is in the complement of U. Now this complement $F:=U^{c}$ is closed (see 17(e)) so then we can use the definition of closed (in item 17(a)) to conclude $x \in U^{c}$ which contradicts $x \in U$.
3. Let M be a metric space and let $a \in M$.

Let $U=\{x \in M \mid D(a, x)>1\}$. Prove that U is open.
(Note: a is a fixed point, and U is the set of all points in M that have distance >1 from that point a)
A similar question is found in video 4.2 \#1 at time 51:00, and in video 4.2 \#2 at time 28:30, and in
"... sample test questions related to section 4.2" at time 22:10 and 25:00.
Proof: Following the definition of open, we have to do this:
Let $x \in U$, which means $D(a, x)>1$. To prove: $\exists_{r>0} S_{r}(x) \subseteq U$.
Proof: Take $r:=D(a, x)-1$.
(Why does this work? Well, any point in $S_{r}(x)$ has distance $<r$ from x, so it has distance $>D(a, x)-r$ from a by the triangle inequality. So it has distance >1 from a and is thus in U. So any point in $S_{r}(x)$ is in $\left.U\right)$.

List of facts for Chapter 4, shortened version for use with test 3.

1. A metric space M is set with a distance function with the following properties (for all $a, b, c \in M$): $D(a, a)=0, \quad D(a, b)>0$ whenever $a \neq b, \quad D(b, a)=$ $D(a, b)$, and the triangle inequality: $D(a, c) \leq D(a, b)+D(b, c)$.
2. $S_{r}(x)$ is the open ball with radius r and center x.
$S_{r}(x)=\{p \in M \mid D(x, p)<r\}$. So this is the set of all points you can reach if you start from x and then travel a distance that is less than r.
3. We say that p and x are r-close when $D(p, x)<r$.

So $S_{r}(x)$ is the set of all points that are r-close to x.
4. Any set that contains $S_{r}(x)$ for some $r>0$ is called a neighborhood of x. So a set U is a neighborhood of x when there exists some positive r such that all points that are r-close to x are in the set U.
5. Let U be a subset of M. The following statements are equivalent:
(a) $\exists_{r>0} S_{r}(x) \subseteq U$
(b) U is a neighborhood of x
(c) U contains a neighborhood of x.
6. A set $U \subseteq M$ is open when property $5(\mathrm{a})(\mathrm{b})(\mathrm{c})$ is true for every x in U.
7. Note: a neighborhood of x is not the same as an open set, because if we want to check that U is an open set then we need to check property 5 (a) for every element of U. Whereas to check if U is a neighborhood of x, we only have to check property $5(\mathrm{a})$ for one element (namely x).
8. The sets \emptyset and M are always open (even if M does not "look" open. To understand this, selecting M means selecting all points to be considered. Then all r-close points to any x in M are automatically in M).
9. An open neighborhood is (these conditions are equivalent):
(a) A neighborhood of x that happens to be an open set.
(b) An open set that happens to contain x.
10. Any union of open sets is always open (even infinitely many sets!).
11. The intersection of finitely many open sets is again open.
12. x is an isolated point when:
(a) $\{x\}$ is open
(b) There is a neighborhood of x that contains just x and no other elements.
(c) $\exists_{r>0} S_{r}(x)=\{x\}$
(d) A sequence x_{1}, x_{2}, \ldots in M can only converge to x when there is some N such that all $x_{i}=x$ for all $i \geq N$. In other words, when there is some tail x_{N}, x_{N+1}, \ldots of your sequence that equals x, x, \ldots.
13. x is not isolated when
(a) $\{x\}$ is not open.
(b) Every neighborhood of x will contain more elements than just x.
(c) For every $r>0$ the set $S_{r}(x)$ contains more than just x.
(d) There exists a sequence x_{1}, x_{2}, \ldots in M that converges to x but where $x_{n} \neq x$ for every n
(To produce such a sequence, do the following: for every n, the set $S_{\frac{1}{n}}(x)-$ $\{x\}$ is not empty by part (c), so we can choose some x_{n} in $S_{\frac{1}{n}}(x)-\{x\}$. Then $x_{n} \neq x$ but $D\left(x_{n}, x\right)<\frac{1}{n}$ and therefore x_{1}, x_{2}, \ldots converges to x.)
14. Let x_{1}, x_{2}, \ldots be a sequence. A tail is what you get when you throw away the first ... (finitely many) elements. So a tail is a subsequence of the form x_{N}, x_{N+1}, \ldots for some N (here we threw away the first $N-1$ elements).
15. x_{1}, x_{2}, \ldots converges to x when
(a) For every $\epsilon>0$ the sequence has a tail contained in $S_{\epsilon}(x)$.
(b) $\forall_{\epsilon>0} \exists_{N} \forall_{i \geq N} D\left(x_{i}, x\right)<\epsilon$

When these equivalent properties hold then we say that x is the limit of the sequence x_{1}, x_{2}, \ldots.
The most boring convergent sequences are those that have a tail that is constant. Such a sequence obviously converges. If x is isolated, then item $12(\mathrm{~d})$ says that only boring sequences can converge to x.
However, if x is not isolated, then there are more interesting sequences that converge to x, see item $13(\mathrm{~d})$.
16. M is discrete when
(a) Every x in M is isolated.
(b) $\{x\}$ is open for every $x \in M$.
(c) Every set $U \subseteq M$ is open.
17. A set $F \subseteq M$ is closed when
(a) If a sequence x_{1}, x_{2}, \ldots in F converges to x then x must be in F.
(b) If $S_{r}(x) \bigcap F$ is not empty for every $r>0$ then $x \in F$.
(c) If $F \bigcap U \neq \emptyset$ for every neighborhood U of x then $x \in F$.
(d) If every neighborhood of x intersects F (if every neighborhood of x has element(s) in common with F) then $x \in F$.
(e) The complement of F is open, i.e. $F^{c}=M-F$ is open.
(f) F contains all of its limit points (x is a limit point of $F \Longrightarrow x \in F$).
18. A point x is called a limit point of A if there is a sequence in $A-\{x\}$ that converges to x.
19. \bar{A} is called the closure of the set A.
(a) \bar{A} is the union of A and all of its limit points.
(b) \bar{A} is the smallest closed set that contains A.
(c) \bar{A} is the intersection of all closed sets that contain A.
(d) $x \in \bar{A} \Longleftrightarrow$ every neighborhood of x intersects A.
(e) $x \in \bar{A} \Longleftrightarrow \exists$ a sequence $x_{1}, x_{2}, \ldots \in A$ that converges to x.
(f) $x \in \bar{A} \Longleftrightarrow \forall_{\epsilon>0}$ there is a point in A that is ϵ-close to x.
20. x is a limit point of A if x is in the closure of $A-\{x\}$.
21. If x_{1}, x_{2}, \ldots converges to x and y_{1}, y_{2}, \ldots converges to y, then $D\left(x_{1}, y_{1}\right), D\left(x_{2}, y_{2}\right), \ldots$ converges to $D(x, y)$.
22. The diameter of a set A is the supremum of $\{D(x, y) \mid x, y \in A\}$.
23. If A is a set, then the diameter of A equals the diameter of \bar{A}. To prove this, you need item 21.
24. The union of finitely many closed sets is again closed.
25. The intersection of closed sets (even if you take infinitely many closed sets!) is again closed.

