Intro Advanced Math., test 2, March 10, 2020

- 1. For each, simplify the cardinality to one of: $0, 1, 2, ..., \aleph_0, c, 2^c, 2^{2^c}, ...$ For (a)–(g) you do not need to show your work, but for (h),(i),(j) you need to justify your answer by showing all steps.
 - (a) $P(\emptyset)$
 - (b) $\{2,2,2\}-\{2\}$
 - (c) N
 - (d) $\emptyset \times \mathbb{R}$
 - (e) $P(\mathbb{R} \times \mathbb{Q})$
 - (f) $P(\mathbb{Q} \mathbb{Z})$
 - (g) $P(\mathbb{R})$
 - (h) $\mathbb{R}^{\mathbb{R}}$
 - (i) $\mathbb{R}^{\mathbb{N}}$
 - (j) $\mathbb{N}^{\mathbb{R}}$
- 2. Does there exist: (for some of these you can use Ex 1) (it suffices to write yes/no):
 - (a) an injective function from $\mathbb{R}^{\mathbb{R}}$ to $\mathbb{N}^{\mathbb{R}}$?
 - (b) an injective function from $\mathbb{N}^{\mathbb{R}}$ to $\mathbb{R}^{\mathbb{N}}$?
 - (c) an injective function from $\mathbb{R}^{\mathbb{N}}$ to $P(\mathbb{N})$?
 - (d) an injective function from $\mathbb{Q} \times \mathbb{Q}$ to \mathbb{N} ?
- 3. Let A be an infinite set, let $B \subseteq A$, and suppose there is no bijection from A to B. Must there then be a bijection from A to A - B? Yes/No. Give a proof for your answer. Label each piece of given information as (1), (2), (3) and make sure your proof uses each.
- 4. Suppose that A is an infinite set. Must there exist an injective function from $A \times \mathbb{Q}$ to A? Yes/No. Give a proof for your answer.
- 5. Suppose that $A \subseteq \mathbb{R}$ is countable. Must there exist $r \in \mathbb{R}$ such that $r \neq a + b$ for all $a \in A$ and all $b \in \mathbb{Q}$? Explain. Hint: Ex 4.
- 6. Suppose that there exists an injective function from \mathbb{N} to P(A). Prove that there is an injective function from \mathbb{R} to P(A).

If you run out of time then mark one of Ex 3-6 as HW.

List of facts on cardinal numbers, shortened version.

- 1. o(A) = o(B) means $\exists f : A \to B$ with f bijection.
- 2. $o(A) \leq o(B)$ means $\exists f : A \to B$ with f one-to-one.
- 3. \aleph_0 is short notation for $o(\mathbb{N}^*)$.
- 4. c is short notation for $o(\mathbb{R})$.
- 5. The set A is countably infinite when: $o(A) = \aleph_0$. By item 1 this means: $\exists f : \mathbb{N}^* \to A$ with f bijection. Note, in that case $A = f(\mathbb{N}^*) = f(\{1, 2, \ldots\}) = \{f(1), f(2), \ldots\}$ and this means that all elements of A fit into one sequence $f(1), f(2), \ldots$

- 6. Notation: x < y is short for: $x \le y \land x \ne y$.
- 7. o(A) < o(P(A)).
- 8. Item 7 implies that not all infinite sets have the same cardinality! The cardinal number $o(\mathbb{N}^*) = \aleph_0$, is NOT the largest possible cardinality despite the fact that it is infinite! After all, $P(\mathbb{N}^*)$ has larger cardinality by item 7. And $P(P(\mathbb{N}^*))$ has larger cardinality still!
- 9. If $f: A \to B$ is onto then $o(B) \le o(A)$.
- 10. A is countable when either: A is countably infinite (defined in item 5) or A is finite.
- 11. A is countable when $o(A) \leq \aleph_0$.
- 12. A subset of a countable set is again countable.
- 13. If $A \subseteq B$ then $o(A) \le o(B)$.
- 14. The ordering \leq on cardinal numbers is a partial ordering. In particular: whenever $d \leq e$ and $e \leq d$ we may conclude d = e. You might remember that the proof was not easy!
- 15. The ordering \leq on cardinal numbers is a *total ordering*. So given any two cardinals d, e we have $d \leq e$ or $d \geq e$. This means that one of these things must be true: d < e or d = e or d > e.
- 16. Set A is uncountable when $o(A) \not\leq \aleph_0$. Using item 15 we can reformulate this by saying: A is uncountable when $o(A) > \aleph_0$.
- 17. Any infinite set contains a countably infinite subset. (note: That an uncountable set has a countably infinite subset follows from item 16).
- 18. \mathbb{Z} and \mathbb{Q} are countable.
- 19. If you have countably many sets, and if each of these sets is countable, then their union is also countable.
- 20. \mathbb{R} is uncountable. $c = o(\mathbb{R}) = o(P(\mathbb{N}^*))$.
- 21. If d = o(D) and e = o(E) then d + e is the cardinality of $D \cup E$ if we assume that $D \cap E = \emptyset$. Likewise, $d \cdot e$ is the cardinality of $D \times E$. d^e is the cardinality of D^E where $D^E = \{\text{all functions from } E \text{ to } D\}$.
- 22. If d, e are cardinal numbers, and if at least one of them is infinite, then $d + e = \max(d, e)$. If $d \neq 0$ and $e \neq 0$ and at least one of them is infinite, then $d \cdot e$ equals $\max(d, e)$ as well. So for non-zero cardinals with at least one infinite, the operations $+, \cdot, \cdot$ max are the same!
- 23. There is a bijection between P(A) and $\{0,1\}^A$, and hence $o(P(A)) = o(\{0,1\}^A) = o(\{0,1\})^{o(A)} = 2^{o(A)}$.
- 24. $c = o(\mathbb{R}) = o(P(\mathbb{N}^*)) = o(\{0, 1\}^{\mathbb{N}^*}) = 2^{o(\mathbb{N}^*)} = 2^{\aleph_0}$.
- 25. $(d_1d_2)^e = d_1^e d_2^e$, $d^{e_1+e_2} = d^{e_1}d^{e_2}$, $(d^e)^f = d^{ef}$
- 26. If you have d sets, and each of these sets has cardinality e, and if A is the union of all those sets, then $o(A) \leq de$ (if the d sets are disjoint, then you may replace the \leq by =). Now if d or e is infinite, and both are non-zero, then we can also replace de by $\max(d,e)$, see item 22.