Intro Advanced Math., test 2 ANSWERS, March 10, 2020

- 1. For each, simplify the cardinality to one of: $0, 1, 2, ..., \aleph_0, c, 2^c, 2^{2^c}, ...$ For (a)–(g) you do not need to show your work, but for (h),(i),(j) you need to justify your answer by showing all steps.
 - (a) $P(\emptyset)$: 1
 - (b) $\{2,2,2\}-\{2\}$: 0
 - (c) \mathbb{N} : \aleph_0
 - (d) $\emptyset \times \mathbb{R}$: 0
 - (e) $P(\mathbb{R} \times \mathbb{Q})$: 2^c
 - (f) $P(\mathbb{Q} \mathbb{Z})$: c
 - (g) $P(\mathbb{R})$: 2^c
 - (h) $\mathbb{R}^{\mathbb{R}}$: $c^c = (2^{\aleph_0})^c = 2^{\aleph_0 c} = 2^c$
 - (i) $\mathbb{R}^{\mathbb{N}}$: $c^{\aleph_0} = (2^{\aleph_0})^{\aleph_0} = 2^{\aleph_0 \aleph_0} = 2^{\aleph_0} = c$
 - (j) $\mathbb{N}^{\mathbb{R}}$: $2^c \le \aleph_0^c \le c^c = [\text{Ex } 1(h)] = 2^c \text{ so } \aleph_0^c = 2^c \text{ by item } 15.$
- 2. Does there exist: (for some of these you can use Ex 1) (it suffices to write yes/no):
 - (a) an injective function from $\mathbb{R}^{\mathbb{R}}$ to $\mathbb{N}^{\mathbb{R}}$? Yes
 - (b) an injective function from $\mathbb{N}^{\mathbb{R}}$ to $\mathbb{R}^{\mathbb{N}}$? No
 - (c) an injective function from $\mathbb{R}^{\mathbb{N}}$ to $P(\mathbb{N})$? Yes
 - (d) an injective function from $\mathbb{Q} \times \mathbb{Q}$ to \mathbb{N} ? Yes
- 3. Let A be an infinite set (1), let $B \subseteq A$ (2), and suppose there is no bijection from A to B (3). Must there then be a bijection from A to A B? Yes/No. Give a proof for your answer.
 - From (2): $B \subseteq A$ so $A = B \bigcup (A B)$ and hence o(A) = o(B) + o(A B).
 - Then from (1) and item 22: $o(A) = \max(o(B), o(A B))$.
 - Now $o(A) = \max(o(B), o(A B))$ but $o(A) \neq o(B)$ from (3) and so o(A) = o(A B) which means a bijection from A to A B exists.
- 4. Suppose that A is an infinite set. Must there exist an injective function from $A \times \mathbb{Q}$ to A?

From item 22 and A infinite: $o(A \times \mathbb{Q}) = o(A)o(\mathbb{Q}) = o(A)\aleph_0 = \max(o(A), \aleph_0) = o(A)$. (the last = is because $o(A) \geq \aleph_0$ for any infinite set A). So yes there must be a bijection.

5. Suppose that $A \subseteq \mathbb{R}$ is countable. Must there exist $r \in \mathbb{R}$ such that $r \neq a + b$ for all $a \in A$ and all $b \in \mathbb{Q}$? Explain. Hint: Ex 4 or item 19.

Proof 1: $S:=\{a+b\mid a\in A,b\in\mathbb{Q}\}=\bigcup_{b\in\mathbb{Q}}A+b$ is a countable union of countable sets, and hence countable. But \mathbb{R} is not countable so it must have an element r that is not in S. Proof 2: $A\times\mathbb{Q}$ is countable so no function $A\times\mathbb{Q}\to\mathbb{R}$ can be onto. So the function that sends $(a,b)\in A\times\mathbb{Q}$ to a+b can not be onto. Therefore there exists $r\in R$ that is not of the form a+b with $a\in A$ and $b\in\mathbb{Q}$.

6. Suppose that there exists an injective function from \mathbb{N} to P(A). Prove that there is an injective function from \mathbb{R} to P(A).

The injective function shows that P(A) is infinite. Then A is infinite, so $o(A) \ge \aleph_0$ and $o(P(A)) = 2^{o(A)} \ge 2^{\aleph_0} = c$. This $o(P(A)) \ge c$ means there is an injective function $\mathbb{R} \to P(A)$.