1. $\aleph_0 + \aleph_0 = \aleph_0$

 $\aleph_0 + c + 2^\aleph_0 = c$

 $\aleph_0 + 3, 3, 3\} = 1$

 $(2^\aleph_0)^2 = (2^\aleph_0)^2 = 2^{\aleph_0} = 2^c$

 $o(\emptyset) = 2^0 = 1$

 $o(\mathcal{P}(\emptyset)) = c$

 $o(\mathcal{P}(\mathbb{R})) = (2^\aleph_0)^c = 2^{\aleph_0} = 2^c$

 $o(\mathbb{R} \times \mathbb{N}) = c\aleph_0 = c$

 $7^{\aleph_0} = 2^{\aleph_0} = c$

 $2^\aleph_0 = (2^\aleph_0)^c = 2^{\aleph_0} = 2^c$

 $o(\mathcal{P}(\mathbb{R} \cup \emptyset)) = 0$,c

 $o(\mathcal{P}(\mathbb{R} \times \mathbb{N})) = (2^\aleph_0)^{\aleph_0} = 2^{\aleph_0} \aleph_0 = \aleph_0 = c$

 $o(\mathcal{P}(\mathbb{N})) = 2^{\aleph_0} = c$

 Note: $\mathcal{P}(\mathbb{Q}) - \mathcal{P}(\mathbb{N})$ contains $\mathcal{P}(\mathbb{Q} - \mathbb{N}) - \{\emptyset\}$ which has cardinality $2^\aleph_0 = \aleph_0 = c$.

2. Let A, B, C be sets.

 (a) Write down the definition of $o(A) \leq o(B)$.

 This means there exists an injective function $f : A \rightarrow B$.

 (b) We know that

 \[\text{if } o(A) \leq o(B) \text{ and } o(B) \leq o(C) \text{ then } o(A) \leq o(C).\]

 Write down a proof for this rule using only the definition of \leq.

 If there is an injective function $f : A \rightarrow B$ and an injective function $g : B \rightarrow C$ then there is an injective function $A \rightarrow C$, namely, just take the composition $g \circ f$.

3. (a) Give the definition of cardinal addition: if $D \cap E = \emptyset$ and $d = o(D)$ and $e = o(E)$ then $d + e$ is defined as: $o(D \cup E)$.

 (b) Let A be an infinite set, let B be a subset and let $C = A - B$.

 Suppose that there is a bijection from B to C.

 Prove that there is a bijection from A to C.

 \[o(A) = o(B) + o(C) = o(C) + o(C) = \max(o(C), o(C)) = o(C), \text{ hence there is a bijection from } A \text{ to } C.\]

 The first equality holds because $A = B \cup C$ and B, C are disjoint. The second equality holds because there is a bijection from B to C. The third equality holds because A (and hence C) is an infinite set.

 (c) Give the definition of cardinal multiplication: $de = o(D \times E)$.

 (d) Let A, B, C as in part (b), and assume that B and C are not empty.

 Prove that there is a bijection from A to $B \times C$.

 \[o(B \times C) = o(B)o(C) = \max(o(B), o(C)) = o(C) = o(A). \text{ Hence there is a bijection from } A \text{ to } B \times C.\]
4. Let \(\mathbb{N}^* = \{1, 2, 3, 4, \ldots\} \), \(E = \{2, 4, 6, 8, \ldots\} \), \(D = \{1, 3, 5, 7, \ldots\} \).

So \(E = \{\text{all even positive integers}\} \), and \(D = \{\text{all odd positive integers}\} \).

(a) Give a bijection \(f : \mathbb{N}^* \to E \)

\[f(n) = 2n \]
(note: this proves \(o(\mathbb{N}^*) = o(E) \))

(b) Give a bijection \(g : \mathbb{N}^* \to D \)

\[g(n) = 2n - 1 \]
(note: this proves \(o(\mathbb{N}^*) = o(D) \))

(c) Explain why parts (a),(b), and Ex.3(a), show: \(\aleph_0 + \aleph_0 = \aleph_0 \).

\(\mathbb{N}^* \) is the disjoint union of \(D, E \) and hence

\[\aleph_0 = o(\mathbb{N}^*) = o(D \cup E) = o(D) + o(E) = \aleph_0 + \aleph_0. \]

5. Take home: Suppose that for each \(n \in \mathbb{N}^* \) you are given a subset \(A_n \subseteq \mathbb{R} \).

Suppose that \(\mathbb{R} = A_1 \cup A_2 \cup A_3 \cup \ldots \). Show that at least one of those sets \(A_n \) must be uncountable.

If all of the \(A_n \) are countable, then \(A_1 \cup A_2 \cup A_3 \cup \ldots \) is a countable union of countable sets, hence countable. But \(\mathbb{R} \) is not countable, so not all \(A_n \) can be countable.

6. Take home: Let \(A = \{S \subset \mathbb{R} \mid S \text{ countable}\} \). So \(A \) is the set of all countable subsets of \(\mathbb{R} \), in other words:

\(S \in A \) if and only if \(S \) is countable and \(S \subset \mathbb{R} \).

Prove that \(o(A) = c \).

Hint: Find an onto function \(F : \mathbb{R}^{\mathbb{N}^*} \to B \) where \(B = A - \{\emptyset\} \).

An element \(g \in \mathbb{R}^{\mathbb{N}^*} \) is a function \(g : \mathbb{N}^* \to \mathbb{R} \). Now define:

\(F(g) := \{ g(1), g(2), g(3), \ldots \} \in B \). This function \(F \) is onto, hence \(o(B) \leq o(\mathbb{R}^{\mathbb{N}^*}) = c^{\aleph_0} = c \).

The function \(h : \mathbb{R} \to B \) with \(h(x) = \{x\} \) is injective, hence \(c = o(\mathbb{R}) \leq o(B) \). Combined, we find \(o(B) = c \).

Then \(o(A) = o(B) + 1 = c + 1 = c \).