
Answers Test 3, Intro Advanced Math. April 15, 2019.

1. Let M be a metric space and x ∈M . Write down the negation of the
following statement. In words, what does your answer say?

∀r>0∃p∈M p 6= x ∧D(p, x) < r

Answer:
∃r>0∀p∈M p = x ∨D(p, x) ≥ r

That’s what items 12(b) and 12(c) say, so x is an isolated point.

2. For each of the following sets in the metric space M = R, mention if
it is open, closed, both, or neither. For each set A that is not closed,
write down its closure A:

∅: both
[0,∞): closed
Q− {0}: neither. The closure is R.
R− {0}: open. The closure is R.
(0, 1]: neither. The closure is [0, 1].
{11 ,

1
2 ,

1
3 ,

1
4 , . . .}: neither. The closure has 1 more point, namely 0.

3. Let M be a metric space, A a closed subset, and p an isolated point.
Prove that A− {p} is closed.
Proof#1: {p} is open because p is isolated. Then its complement
M − {p} is closed. Then A − {p} = A

⋂
(M − {p}) is an intersection

of closed sets and thus closed.

Proof#2: The complement of A− {p} is Ac
⋃
{p} which is the union

of two open sets, and thus open. Then A− {p} is closed.

Proof#3: Let x1, x2, . . . be a sequence in A − {p} and suppose it
converges to x. To prove: x ∈ A−{p}. Now x ∈ A because A is closed
and the sequence is in A. Remains to prove: x 6= p. By contradiction:
If x = p then 12(d) says that p, p, . . . is a tail of our sequence which
contradicts the fact that the sequence is in A− {p}.

Proof#4: IfA is closed andA−{p} is not closed, then we can draw two
conclusions: (1) p ∈ A, and (2) the smallest closed set that contains
A − {p} must be A, in other words A = A− {p} (see item 19(b)).
Then p is a limit point of A (item 20) which implies (see items 18 and
13(d)) that p is not isolated, contradicting an assumption.



4. Let M be a metric space, A is a subset of M , and x ∈ M . Suppose
that x ∈ A and x 6∈ A. Show that x is not isolated.

Proof#1: If x ∈ A and x 6∈ A then x is a limit point of A (see item
20) which implies (see items 18 and 13(d)) that x is not isolated.

Proof#2: By 19(e) if x ∈ A then there is a sequence in A that
converges to x. But if x 6∈ A then every member of that sequence is
6= x so then x is not isolated by 13(d).

Proof#3: The set A is closed, so if x were isolated, then by Exercise 3
we would see that F := A− {x} is still closed. Then F is a closed set
that contains A (use x 6∈ A). But then A is not the smallest closed set
that contains A since x ∈ A and x 6∈ F . That contradicts 19(b).

5. Let M be a metric space, and let A be a subset of M . For x ∈M we
say that the distance from x to A is less than 1 if there exists some
a ∈ A with D(a, x) < 1. Let U be the set of points in M that have
distance less than 1 to A. In other words

U = {x ∈M | ∃a∈A D(a, x) < 1}

Show that U is an open subset of M .

Proof#1:

U = {x ∈M | ∃a∈A x ∈ S1(a)} =
⋃
a∈A

S1(a) =
⋃

open sets = open

Proof#2: Let x ∈ U . To prove: any of the items 5(a), 5(b), or 5(c).
Now x ∈ S1(a) for some a ∈ A. But S1(a) is open and contains x, so
S1(a) is an open neighborhood of x (see item 9(b)), so we proved 5(c).

Proof#3: Let x ∈ U . Then D(a, x) < 1 for some a ∈ A. To prove:
∃r>0 Sr(x) ⊆ U . Proof: take r = 1−D(a, x).

Remains to prove: Sr(x) ⊆ U (if you omitted this you’ll still get full
credit. You can prove Sr(x) ⊆ S1(a) ⊆ U with the triangle inequality).

Proof#4: Lets prove that U c is closed with item 17(a). Take a se-
quence x1, x2, . . . in U c that converges to x. To prove x ∈ U c. A point
is in U c if it has distance ≥ 1 from any a in A. So for any a ∈ A
we have D(x1, a) ≥ 1, D(x2, a) ≥ 1, etc. The last theorem in section
4.3 says that if x1, x2, . . . converges to x then D(x, a) is the limit of
D(x1, a), D(x2, a), . . .. All of those are ≥ 1 so the limit D(x, a) must
be ≥ 1 as well. So D(x, a) ≥ 1, for arbitrary a ∈ A, and hence x ∈ U c.


