Answers Test 3, Intro Advanced Math. April 15, 2019.

1. Let M be a metric space and $x \in M$. Write down the negation of the following statement. In words, what does your answer say?

$$
\forall_{r>0} \exists_{p \in M} \quad p \neq x \wedge D(p, x)<r
$$

Answer:

$$
\exists_{r>0} \forall_{p \in M} \quad p=x \vee D(p, x) \geq r
$$

That's what items 12(b) and 12(c) say, so x is an isolated point.
2. For each of the following sets in the metric space $M=\mathbb{R}$, mention if it is open, closed, both, or neither. For each set A that is not closed, write down its closure \bar{A} :
\emptyset : both
$[0, \infty)$: closed
$\mathbb{Q}-\{0\}: \quad$ neither. The closure is \mathbb{R}.
$\mathbb{R}-\{0\}:$ open. The closure is \mathbb{R}.
$(0,1]$: neither. The closure is $[0,1]$.
$\left\{\frac{1}{1}, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \ldots\right\}$: neither. The closure has 1 more point, namely 0 .
3. Let M be a metric space, A a closed subset, and p an isolated point. Prove that $A-\{p\}$ is closed.
Proof\#1: $\{p\}$ is open because p is isolated. Then its complement $M-\{p\}$ is closed. Then $A-\{p\}=A \bigcap(M-\{p\})$ is an intersection of closed sets and thus closed.

Proof\#2: The complement of $A-\{p\}$ is $A^{c} \bigcup\{p\}$ which is the union of two open sets, and thus open. Then $A-\{p\}$ is closed.

Proof\#3: Let x_{1}, x_{2}, \ldots be a sequence in $A-\{p\}$ and suppose it converges to x. To prove: $x \in A-\{p\}$. Now $x \in A$ because A is closed and the sequence is in A. Remains to prove: $x \neq p$. By contradiction: If $x=p$ then $12(\mathrm{~d})$ says that p, p, \ldots is a tail of our sequence which contradicts the fact that the sequence is in $A-\{p\}$.

Proof\#4: If A is closed and $A-\{p\}$ is not closed, then we can draw two conclusions: (1) $p \in A$, and (2) the smallest closed set that contains $A-\{p\}$ must be A, in other words $A=A-\{p\}$ (see item 19(b)). Then p is a limit point of A (item 20) which implies (see items 18 and $13(\mathrm{~d})$) that p is not isolated, contradicting an assumption.
4. Let M be a metric space, A is a subset of M, and $x \in M$. Suppose that $x \in \bar{A}$ and $x \notin A$. Show that x is not isolated.

Proof\#1: If $x \in \bar{A}$ and $x \notin A$ then x is a limit point of A (see item 20) which implies (see items 18 and $13(\mathrm{~d})$) that x is not isolated.

Proof\#2: By 19(e) if $x \in \bar{A}$ then there is a sequence in A that converges to x. But if $x \notin A$ then every member of that sequence is $\neq x$ so then x is not isolated by $13(\mathrm{~d})$.
Proof\#3: The set \bar{A} is closed, so if x were isolated, then by Exercise 3 we would see that $F:=\bar{A}-\{x\}$ is still closed. Then F is a closed set that contains A (use $x \notin A$). But then \bar{A} is not the smallest closed set that contains A since $x \in \bar{A}$ and $x \notin F$. That contradicts 19(b).
5. Let M be a metric space, and let A be a subset of M. For $x \in M$ we say that the distance from x to A is less than 1 if there exists some $a \in A$ with $D(a, x)<1$. Let U be the set of points in M that have distance less than 1 to A. In other words

$$
U=\left\{x \in M \mid \exists_{a \in A} \quad D(a, x)<1\right\}
$$

Show that U is an open subset of M.
Proof\#1:

$$
U=\left\{x \in M \mid \exists_{a \in A} \quad x \in S_{1}(a)\right\}=\bigcup_{a \in A} S_{1}(a)=\bigcup \text { open sets }=\text { open }
$$

Proof\#2: Let $x \in U$. To prove: any of the items $5(\mathrm{a}), 5(\mathrm{~b})$, or $5(\mathrm{c})$. Now $x \in S_{1}(a)$ for some $a \in A$. But $S_{1}(a)$ is open and contains x, so $S_{1}(a)$ is an open neighborhood of x (see item 9(b)), so we proved 5(c).

Proof\#3: Let $x \in U$. Then $D(a, x)<1$ for some $a \in A$. To prove: $\exists_{r>0} \quad S_{r}(x) \subseteq U$. Proof: take $r=1-D(a, x)$.
Remains to prove: $S_{r}(x) \subseteq U$ (if you omitted this you'll still get full credit. You can prove $S_{r}(x) \subseteq S_{1}(a) \subseteq U$ with the triangle inequality).

Proof\#4: Lets prove that U^{c} is closed with item 17(a). Take a sequence x_{1}, x_{2}, \ldots in U^{c} that converges to x. To prove $x \in U^{c}$. A point is in U^{c} if it has distance ≥ 1 from any a in A. So for any $a \in A$ we have $D\left(x_{1}, a\right) \geq 1, D\left(x_{2}, a\right) \geq 1$, etc. The last theorem in section 4.3 says that if x_{1}, x_{2}, \ldots converges to x then $D(x, a)$ is the limit of $D\left(x_{1}, a\right), D\left(x_{2}, a\right), \ldots$ All of those are ≥ 1 so the limit $D(x, a)$ must be ≥ 1 as well. So $D(x, a) \geq 1$, for arbitrary $a \in A$, and hence $x \in U^{c}$.

