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Abstract. Increased complexity of engineered microbial biocircuits highlights the need for dis-
tributed cell functionality due to concomitant increases of metabolic and regulatory burdens im-
posed on single-strain topologies. Distributed systems, however, introduce additional challenges
since consortium composition and spatiotemporal dynamics of constituent strains must be robustly
controlled to achieve desired circuit behaviors. Here, we address these challenges with a modeling-
based investigation of emergent spatiotemporal population dynamics that result from cell-length
control of monolayer, two-strain bacterial consortia. We demonstrate that with dynamic control
of a strain’s division length, nematic cell alignment in close-packed monolayers can be destabi-
lized. We found this destabilization confered an emergent, competitive advantage on smaller-length
strains—but by mechanisms that differed depending on the spatial patterns of the population. We
used complementary modeling approaches to elucidate underlying mechanisms: an agent-based
model to simulate detailed mechanical and signaling interactions between the competing strains
and a reductive, stochastic lattice model to represent cell-cell interactions with a single rotational
parameter. Our modeling suggests that spatial strain-fraction oscillations can be generated when
cell-length control is coupled to quorum-sensing signaling in negative feedback topologies. Our
research employs novel methods of population control and points the way to programming strain
fraction dynamics in consortial synthetic biology.

* These authors contributed equally to this work.

Engineered microbial collectives are more versatile and robust than single strain
populations. However, the function of such collectives is sensitive to their spatiotem-
poral organization. Here, we demonstrate control of the spatiotemporal composition
of synthetic microbial consortia by dynamically modulating the average cell length of
constituent strains. Such modulation confers an emergent “mechanical fitness” advan-
tage upon the shorter length strain. We used both a biophysically realistic agent-based
model to test the impact of cell shape on spatiotemporal dynamics and a conceptu-
ally simpler stochastic lattice model to explain the essential mechanisms driving the
dynamics.

Introduction

Understanding and designing microbial consortia with distributed functionality is of increasing
interest in synthetic biology [6,20,28,31,43,50,53]. Assigning different functions to separate strains
in a consortium reduces the metabolic load on each strain and thus allows more complex functional-
ity and greater robustness [2,8,10,51,54]. Synthetic genetic circuits previously engineered in single
strains, such as feedback oscillators and toggle switches [17, 22], have recently been implemented
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2 EMERGENT SPATIOTEMPORAL POPULATION DYNAMICS WITH CELL-LENGTH CONTROL

in consortia [2, 10, 18, 33]. However, we still lack the mathematical and computational tools that
allow us to help engineer such systems in a principled way.

Synthetic microbial consortia intrinsically require balance and control of population strain frac-
tions to acheive desired genetic circuit functionality. Important population control studies of syn-
thetic bacterial collectives in the literature have employed both theoretical and experimental ap-
proaches, and a number of different control mechanisms have been introduced. Such approaches
include predator-prey systems [5], cross-feeding auxotrophs [32], toxin-antitoxin [49] and “ortholy-
sis” [53] mechanisms, and external switching control [52]. Although many of these methods employ
regulating feedback, population dynamics achieved via toxic agents released by a cell must itself
be tightly controlled to prevent unwanted expression and non-robust population behaviors. Stud-
ies that focus on distributed microbial systems have also been wide-ranging and include those of
information exchange between constituent strains [26], ecological dynamics [12, 46, 63], metabolic
resource allocation [27, 44], microbial social interactions [37], and the human microbiome [39, 55].
In each of these examples, balance and control of constituent parts is central to robust functionality
[38,58].

In contrast to population control mechanisms employing a toxin, here we suggest that microbial
consortium’s strain distribution can be controlled by changing the average division length of cells
within each strain. Our approach stems from two active research areas in bacterial synthetic biology.
One area focuses on how cell aspect ratio (cell length divided by cell width) affects cell ordering
in close-packed environments [11, 14, 30, 42, 59, 62]. These studies have combined experimental,
theoretical, and computational approaches to demonstrate that decreasing cell length generally
decreases cell nematic ordering in spatially confined environments such as monolayer microfluidic
devices. The second research area concerns programming bacterial cell aspect ratio by modulating
expression of the cell-division proteins MreB and FtsZ [29,56,64]. Our modeling approach explores
a synthesis of these two lines of research by proposing that cell division length can be modulated
dynamically in a single experiment.

We simulated the growth, mechanical interactions and intercellular signaling of two microbial
strains with different average cell lengths in a spatially-extended, monolayer microfluidic device.
We considered populations of rod-shaped bacteria, whose axial growth leads to emergent columnar
population structures [3,30] and found that decreasing a cell’s average length can alter population
dynamics by destabilizing this emergent columnar organization. Using an agent-based modeling
(ABM) approach, we found that this mechanism gave shorter cells a competitive advantage ("me-
chanical fitness") in close-packed microfluidic trap simulations. To better understand the essential
dynamical mechanisms behind the emergent dynamics, we also developed a complementary lattice
model (LM) approach based on the key features of the microbial growth and interactions [30]. For
our LM, we mapped the cell division length to a single parameter—the probability of cell rotation
upon division—which we hypothesized controlled the emergent population patterns seen in our
simulations

Results

Agent-based modeling.

Single-strain nematic cell ordering. To determine how cell length influences the spatiotemporal
dynamics of bacterial populations, we used an agent-based model (ABM) of E.coli cells growing
and dividing in an open-walled microfluidic device (see Methods). We began with single-strain
simulations to measure steady-state cell ordering in two regions of the trap (bulk and edge) as
shown in Fig 1. Each simulation was initiated by seeding the trap with 32 cells, randomly placed
within the trapping region [3]. Following a trap-filling transient, cells in the bulk region formed
nematically aligned vertical columns, as previously reported in modeling and experimental studies
[7,14,30,33,59,60]. The ordering of cells in each region depended, however, on the average division

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 6, 2021. ; https://doi.org/10.1101/2021.04.06.438650doi: bioRxiv preprint 

https://doi.org/10.1101/2021.04.06.438650
http://creativecommons.org/licenses/by/4.0/


EMERGENT SPATIOTEMPORAL POPULATION DYNAMICS WITH CELL-LENGTH CONTROL 3

Figure 1. Average cell length affects nematic ordering in open-walled microflu-
idic trap simulations. (A) ABM simulation snapshots for three different average cell
division lengths (2.5, 4.2, and 6.3µm, bottom to top) in a 20 x 100 µm open-walled mi-
crofluidic trap. For each simulation snapshot the order parameter, q, was measured in two
different trap regions once the population reached steady-state (Eq. (1)). (B) Order param-
eter in the bulk and edge subregions. Circles and error bars represent means and standard
deviations, respectively, for a single, representative simulation at each division length. Data
was sampled twice per generation for 120 total samples after population stabilization (≈ 5
hours after cell seeding). With decreased average division length, cell ordering decreased in
both regions, but disorder persisted in the edge regions even for the longest division lengths
simulated. Boxed data corresponded to the three cases shown in panel (a).

length, l̄d, of the cell: Ordering in both regions decreased with decreasing l̄d (Fig 1B) but maximal
ordering in the bulk region required a minimum l̄d. We define the order parameter as

(1) q =
√
〈cos 2φ〉2 + 〈sin 2φ〉2,

where φ denotes cell angle from horizontal in the lab frame and 〈·〉 signifies a region (bulk or
edge) average. Correlation between cell length and nematic ordering has been reported previously
[11,21,42].

For the smallest average division length we simulated (2.5 µm, Fig 1A, bottom panel), the bulk
population did not exhibit complete disorder (i.e., q > 0, where q = 0 would represent a uniform
distribution of cell orientations [21]). However, we still observed cells that were oriented horizontally
at random times and locations in each simulation run. We also observed horizontal cells in the bulk
region for larger values of l̄d, but not when l̄d was greater than approximately 4 µm. Horizontally
oriented cells are significant since they can invade an adjoining column by axial growth. Based on
these results, we hypothesized that horizontally oriented cells in the bulk region of a microfluidic
population can alter population dynamics in two-strain consortia if one strain’s average division
length is sufficiently small (l̄d < 4 µm) compared to the other (l̄d > 4 µm), assuming a constant
cell width of 1 µm.

In multi-strain computational and experimental studies of morphologically homogeneous popu-
lations, columnar cell structure (nematic order) leads to long-term stabilization of the population
ratios of each strain [3, 60]. We thus conjectured that emergent nematic disorder could result in
destabilization of columnar structure and thereby affect population ratio stability. To test this
hypothesis, we performed ABM simulations of two-strain bacterial consortia where one strain’s
average division length was reduced after the population structure stabilized with nematic order.
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4 EMERGENT SPATIOTEMPORAL POPULATION DYNAMICS WITH CELL-LENGTH CONTROL

Figure 2. Cell morphology drives consortial population dynamics and strain
fixation. (A) Two-strain ABM simulation snaphots in a 20 x 100 µm trap. Top panel:
With equal average cell division lengths (l̄d = 4.2 µm), the consortium exhibited emergent
columnar structure and stable strain population fractions in the bulk, as in Fig 1. Bottom
panel: A snapshot taken approximately 5 generations (1.5 hours) after the orange strain’s
average division length was reduced by a factor of a = 0.6 (resulting l̄d = 2.5 µm). The
increased rotational propensity of the smaller-length orange strain led to ejection of the blue
strain by lateral invasion of its columns and subsequent growth-induced cell flow toward the
open boundaries. Visible in lower panel are horizontal orange-strain cells beginning to
destabilize adjacent blue-strain columns. (B) Orange strain fraction increased over time
due to columnar invasion of the blue strain. At t ≥ 5 hours (blue line), the orange strain’s
average division length was reduced by factor a = 0.6. Destabilization of the columnar
structure of the blue strain led to its eventual extinction in all simulations; Gray curves: 20
individual simulations; solid orange curve: mean strain fraction trajectory; dashed curve:
Fit of 1−0.5e−α(t−5). Inset: The fit rate parameter α decreases with length-reduction factor
a.

Well-mixed population bands and column invasion. To test the hypothesis that average cell length
affects emergent columnar structure and therefore population dynamics in the close-packed envi-
ronment of a microfluidic trap, we chose a ‘wild-type’ (WT) average division length of 4.2 µm,
a value for which (in single-strain simulations, see Fig 1) we observed nearly complete nematic
ordering (q ≈ 1) in the bulk of the population in steady state. We then performed simulations
with two strains and with two initial conditions: we used the WT strain and a ‘mutant’ strain
(whose average cell length was reduced after population stabilization) in both random (Fig 2) and
strain-separated (Fig 3) initial conditons.

In our first two-strain simulations, we seeded the trap with a total of 32, randomly placed,
WT (blue) and mutant (orange) cells, where each strain type was selected with equal probability
(see Fig 2B, WT strain colored blue). The two strains had identical growth rates [45] and were
distinguished only by their average division lengths (see Methods). In the initial transient period
of seed-cell growth and expansion (t < 5 hours), the two strains’ division lengths were identical.
During this initial period, the strains’ population ratio stabilized after the formation of single-strain,
columnar bands of various widths [3, 60] (see Fig 2A, top image). With this emergent, nematic
cell ordering, strain identity of each column was determined by the anchoring mother-cell position,
which was located at or near the center of the column [3, 60].

At t = 5 hours (approximately 15 cell generations), we reduced the orange strain’s average
division length by a factor of a = 0.6, which persisted through the remainder of the simulation.
As a result of the division length decrease, nematic ordering markedly decreased for the shorter,
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Figure 3. Single-interface consortial population dynamics and bulk forcing. (A)
Snapshots of two-strain ABM simulation with cell strains seeded in separate halves of the
trap. As in Fig 2, we reduced the mean division length of the orange cells to l̄d = 2.5 µm
(a = 0.6) after stabilization of the population and emergence of nematic order in the bulk.
Snapshots correspond to (top) one generation and (bottom) 10 generations (≈ 3 hours)
after induction. (B) Orange strain population fraction time series for 20 ABM simulations.
In contrast to the invasion mechanism illustrated in Fig 2, the orange strain here acted
cooperatively by “bulk forcing”: the blue strain bulk population was pushed laterally and
ejected out the left, open trap boundary. Gray curves: 20 individual simulations; solid
orange curve: mean strain fraction trajectory; dashed curve: fit of 0.5eα(t−5). Inset: the
fit parameter α vs. the division length scale parameter, a. (C) Mechanisms of the bulk
forcing are revealed by kymographs. Top panel: q order parameter averaged over 1µm
columns; Bottom panel: Growth-expansion force, Fk, for each cell was projected horizontally
to compute Fx(x) := 1

n

∑n
k=1 Fk cosφk, where φk is the cell angle from horizontal and

averaging is over cells k in a 1 µm column x. Emergent disorder in the smaller length strain
led to accelerating cumulative horizontal expansion force not present in the wild-type strain;
the force imbalance ejected the longer length strain laterally.

orange strain (Fig 2A, bottom image), and as predicted by our single-strain simulations, orange
cells randomly rotated into horizontal orientations. We then observed that horizontally oriented
cells invaded the adjoining columns of the blue strain. When a cell rotated into an adjoining
mother-cell position, subsequent growth and division of the invading cell allowed the invader and
its descendants to occupy the invaded column by occupying the mother-cell position in the center
of the column.

Fig. 2B shows the resulting temporal evolution of the orange strain fraction for 20 ABM simula-
tions with the random cell-seeding condition for a = 0.6. We found that an exponential function of
the form f(t) = 1−0.5e−α(t−5) (dashed curve) provided an excellent description of the cell fraction
(solid orange curve) average over these simulations. The observed exponential decrease in blue
strain fraction has an intuitive explanation: If we view the loss of blue columns as a stochastic
death process and assume that orange cells invade blue population bands at a constant rate per
blue column, then the death rate is proportional to the number of remaining blue columns. We
additionally found that the computed rate parameter for the exponential fit, α, itself depended
exponentially on the average division length reduction factor, a. In the inset to Fig 2B, the expo-
nential (orange curve) was fit to values of the rate paremeter α (blue circles) computed from similar
ABM simulations per value of a. As expected from the data of Fig 1, α decreased as a increased
due to decreased frequency of orange-strain cell rotations. However, why α depends exponentially
on a remains to be explained.

Two-band populations and bulk rotational forcing. In the above two-strain ABM simulations we
used a random initial seeding in space, which resulted in a banded population structure in steady
state [3]. To understand the effect of the initial spatial patterning of strains on their subsequent
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6 EMERGENT SPATIOTEMPORAL POPULATION DYNAMICS WITH CELL-LENGTH CONTROL

population dynamics, we also seeded the trapping region so that the WT (blue) strain occupied
the left half of the trap and the mutant (orange) strain the right half. This initializaton resulted
in a single, initially stable strain interface near the center of the trap. However, in contrast to the
previous ABM simulations, we did not observe frequent cell rotation and columnar invasion at the
interface. Additionally, we observed that the orange strain’s population growth rate increased over
time (Fig 3B, compare Fig 2B). We conjectured that a different mechanism was responsible for
the population dynamics in the single-interface simulations than for those of the banded-interface
simulations.

As in the previous simulations, after cell-length reduction was induced in the mutant (orange)
strain, nematic disorder in that strain increased (as measured by the order parameter q, see Fig
3C). We observed with this initial condition, however, that the orange population did not frequently
rotate horizontally at the single interface, but rather exerted a cooperative, horizontal force on the
blue population due to the cumulative disorder exhibited in the bulk of orange strain. We then
hypothesized that the observed increased rate of ejection of the WT strain was due to the increased
probability that a mutant cell would grow and divide in a non-vertical direction (i.e, not in a
vertically aligned state) once the bulk disorder in that strain was established and that the observed
cooperative horizontal force would be proportional to the size of the bulk orange population. Hence,
the force imbalance would lead to displacement and ejection of the blue strain, and the resulting
rate of ejection would increase in time due to positive feedback.

To confirm our hypothesis that a second mechanism was responsible for the population dynamics
observed in the separated initial condition, we measured both q, the order parameter, and Fx, the
column-averaged horizontal component of the cells’ growth-expansion force, and plotted them in
kymographs. We define Fx(x) := 1

n

∑n
k=1 Fk(x) cosφk, where φk is the long-axis cell angle from

horizontal in the lab frame, Fk is the cell growth-expansion force [60], and we average over all cells
k in a 1 µm-wide column at horizontal location x. The decrease in q, following reduction of division
length in the orange strain, is tightly correlated with an increase in Fx in the bulk of the trap
(Fig 3C,D). The resulting horizontal force imbalance between the two strains thus effected a net
horizontal force on the bulk population of the blue strain. The magnitude of this force was indeed
proportional to the size of the orange population, which resulted in positive feedback as originally
hypothesized. We note that the observed persistent nematic disorder at the trap’s open boundaries
are due to these boundaries being stress-free (see [60] and Fig 1).

We thus observed that population dynamics in single-interface simulations differed from those
of the banded-interface in ways that confirmed the existence of a different strain-displacement
mechanism. Figure 3B shows the evolution of the orange strain population-fraction again averaged
over 20 ABM simulations (orange curve). An exponential, 0.5eα(t−5), (dashed curve) provided a
good fit to this average, up until the ejection of the blue strain. This exponentially increasing trend
in the fraction of the WT train is consistent with the positive feedback mechanism we identified
above. As we did for the banded simulations, we computed the rate parameter, α, for different
values of the division-length scaling factor, a (Fig 3B, inset, circles). In contrast to the banded
simulations, the fit rate parameter α depends approximately linearly on a in the single-interface
case.

Thus, two different initial seeding conditions in the trap resulted in the displacement of the
WT strain from the trap, but via two distinct mechanisms. However, it is not completely clear to
what extent both mechanisms are present in both conditions: while it is easy to understand that
bulk-forcing may cancel with a randomly distributed array of strain interfaces, we are not certain
why we failed to observe columnar invasion in the single-interface simulations. One reason is that
with multiple interfaces, there are simply more chances for an invasion to occur. Another potential
reason is a decreased compliance of the WT strain with invasion by the blue strain: Emergent
motion of the interface boundary may help the WT boundary column “escape” invasion events by
transport at an advective timescale comparable to that of invasion events.
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Lattice model. The ABM captures growth, cell-cell mechanical interactions, and diffusive signal-
ing in realistic detail. As a result, however, it has many degrees of freedom, which make observed
behaviors difficult to analyze in isolation and computationally expensive to simulate across even a
narrow parameter space for each independent variable. Consequently, we used a complementary
lattice model (LM) to understand the essential mechanisms by which cell morphology drives the
spatiotemporal dynamics of consortia (See Methods). Since individual cells in the LM were sim-
ulated on a regular lattice, we used the rotation probability, prot, as a proxy of cell size: As in
the ABM, we assumed that shorter cells are less likely to change orientation, than their longer
counterparts. ABM simulations showed that decreasing average cell division length confers fitness
advantage via two distinct mechanisms, columnar invasion and lateral bulk forcing. Our simplified
LM incorporates only the essential features of the ABM allowing us to test the hypothesis that the
rotation probability alone facilitates invasion and forcing.

Impact of differing rotation probabilities in the LM. We hypothesized that assigning different ro-
tation probabilities to the two strains in the LM will recapitulate the strain-strain interactions
and the resulting spatiotemporal dynamics observed in the ABM. To verify this hypothesis, we
considered two sets of LM simulations that mirrored those we performed with the ABM.

Before performing two-strain LM simulations, we verified that tuning the rotational probability
prot in isogenic LM simulations reproduced the increase in nematic disorder with a reduction in
average cell division length observed in the ABM. Figure 4A shows that in the LM the order pa-
rameter, q, computed as in the ABM, decreases, and cells are more likely to be oriented horizontally
with an increases in prot.

Our first set of two-strain LM simulations mirrored the multi-inference ABM simulations shown
in Fig 2. We initialized each LM simulation by randomly assigning to each lattice site a cell of either
the blue strain or the orange strain. Initial cell orientations were random (see Fig 7A). During the
first phase of the simulation, we set prot,b (blue strain) and prot,o (orange strain) to zero to allow
single-strain bands of columns of vertically oriented cells to emerge. At time t = 1, we set prot,b = 0
and prot,o = 0.5. Fig 4B shows the temporal evolution of the orange strain fraction, averaged over
1000 LM simulations (orange curve). The function f(t) = 1 − 0.5e−α(t−1) again closely fits this
average temporal evolution. When fit to data, the rate α varied approximately exponentially with
1−prot,o (Fig 4B, inset). Importantly, the LM orange strain fraction dynamics and the dependence
of α on 1 − prot,o closely matched the ABM orange strain fraction dynamics and the dependence
of α on a (compare Fig 2B and 4B). This suggests that the LM successfully captures the invasion
mechanism.

Our second set of two-strain LM simulations mirrored those of Fig 3. We initialized the lattice
so that orange (blue) cells occupied the left (right) half of the trap, producing a single interface
between the strains. To capture the decrease in division length upon induction, we set prot,o < prot,b
at time t = 1. The increased rotational freedom in the orange strain allowed it to eject the blue
strain through the right trap boundary, just as in the ABM simulations. In particular, the rate of
increase of the orange strain fraction grew as the orange strain fraction increased over t ∈ [1, 2], in
accord with the positive feedback process observed in the ABM (see Fig 4C). We fit an exponential
of the form 0.5eα(t−1) to the mean orange strain fraction over t ∈ [1, 2], and found that the rate
parameter α changes approximately linearly with 1− prot,o (Fig 4C, inset). This linear dependence
was equivalent to that in the ABM simulations (compare Fig 3B and 4C) and suggests that the
LM successfully captures the bulk forcing mechanism we observed in the ABM.

Unlike in the ABM, physical forces are not explicitly a part of the LM. However, upon division
a horizontal or vertical cell moves a column of cells consistent with its orientation. Hence, the
average horizontal growth probability describes the propensity of one strain to displace the other
in the horizontal direction. We therefore defined the mean horizontal growth propensity for cells
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Figure 4. Lattice model simulations. (A) As in the ABM the order parameter, q, is
obtained by averaging cell orientations across the trap at different times. Simulations with
a single strain and different lattice sizes show that nematic disorder increases with prot.
(B) In two-strain LM simulations with multiple interfaces, we observed the same invasion
mechanisms as in the ABM simulations. We initially set prot,b(t) = prot,o(t) = 0 so that
during a transient period the two strains formed alternating stripes. Setting prot,b(t) = 0
and prot,o(t) = 0.5 at t > 1 (light blue line), led to the ejection of the blue strain. The
orange curve shows the evolution of the strain fraction averaged over 1000 trajectories,
while gray curves show sample trajectories. The dashed curve shows the fit of the function
1 − 0.5e−α(t−1) to the average orange strain fraction. Inset: The rate parameter, α, as a
function of 1 − prot,o (circles represent LM data, compare to inset in Fig 2B.). (C) The
LM also captured the bulk forcing mechanism we observed in the ABM. Simulations in (C)
matched those in (B), with one change: We initially filled the left half of the lattice with
orange cells, and the right half with blue cells. We fit the temporal evolution of the average
orange strain fraction to 0.5eα(t−1) over t ∈ [1, 2]. Inset: The rate parameter α depends
linearly on 1− prot,o (compare to inset in Fig 3B.) (D) With a single interface between the
strains, horizontally growing cells forced out cells of the opposite strain, equivalent to the
bulk forcing mechanism in the ABM. We plot the temporal evolution of the mean horizontal
growth propensities for three lattice sizes with prot,b = 0.1 and prot,o = 0.5. Simulations in
(C) corresponded to the red curves: The horizontal growth propensity of the orange strain
dominates that of the blue strain, leading to ejection of the blue strain.

of strain k as
1

σk(t)

M∑
i=1

N∑
j=1

h±(j)δkγij
,

where σk(t) is the number of cells of strain k in the lattice at time t, h± is the horizontal growth
rate, δij is the Kronecker delta function, and γij is the strain identity of the cell at the ith row
and jth column in the lattice. Figure 4D shows the temporal evolution of the average horizontal
growth propensities of each strain for the second set of LM simulations (red curves). The average
horizontal growth propensity of the orange strain dominated that of the blue strain, explaining why
the orange strain ejected its competitor.

We observed one important difference in the single-interface simulations between the LM and the
ABM. In the ABM simulations, the movement of the interface between the strains accelerated until
the blue strain was completely ejected from the trap. By contrast, a deceleration phase followed the
initial acceleration phase in the LM simulations. This difference was due to a less stable interface
between the strains in the LM compared to the ABM. In particular, we observed that stray blue
cells remained in the trap even after the majority of the blue population was ejected. Nevertheless,
the LM captured both mechanisms of WT displacement observed in the ABM remarkably well,
despite being considerably simpler, and more tractable. Indeed, the LM can be described exactly
by a master equation that can serve as a basis for further analysis.
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Figure 5. ABM oscillator. (A) Bi-stable circuit topology for quorum-sensing (QS)
signal production, division length (ld) reduction, and QS repression by the protein LacI. (B)
Sustained oscillations illustrated by the concentrations of LacI and strain fraction time series
for an ABM simulation using the circuit topology in (a). Asymmetry in the strain fraction
resulted from different QS molecules (C4HSL, C14HSL) with different diffusion rates. (C)
Kymograph of order parameter q in the same simulation illustrating the switching behavior
and emergent ordering dynamics (compare, Fig 3C).

Collective signaling: A spatial consortial oscillator. As multi-strain collectives grow and fill
microfluidic devices, spatial structure emerges: Single-strain bands form of various widths, which
depend on the cell seeding, but large-width bands can exceed the diffusion correlation length of inter-
strain communication [3]. We next suggest an experimentally feasible way to control such emergent
spatial structures by using quorum-sensing (QS) signaling coupled to cell length modulation. In
particular, we show computationally how oscillations in strain fraction can emerge when a QS signal
from one strain induces a reduction in average division length in the opposite strain in a negative
feedback, dual-state switch topology.

ABM strain fraction oscillator. We used our agent-based model (ABM) to show that spatio-
temporal patterns in a microfluidic device can be controllably generated. To do so we combined
a bistable QS circuit (based on the experimental circuit described in [2]) with the division-length
reduction circuit we used in our two-strain simulations (see Fig 5). In this topology, each strain
produces an orthogonal QS signal that activates the other strain’s LacI (a repressor protein) ex-
pression, which represses the production of QS signal in that strain. In our ABM simulations, when
the QS signal received from the opposite strain surpassed a threshold concentration, HT , this also
triggered the reduction in average cell division length, whiche se set to a fixed factor, a = 0.6. This
is in contrast to our previous simulations where average division length was regulated by exogenous
induction. In the oscillator ABM simulations, each QS signal was well-mixed across the trapping
region and coupled via the flow channels (see Methods).

As in Fig 3, we initialized these simulations by seeding the trap with 32 cells, with each strain
occupying separate halves of the trap. Due to the random initial seeding, upon trap-filling each
strain occupied approximately one-half of the trap, as in the simulations shown in Fig 3. We used
published diffusion rates (see Methods) for the orthogonal QS molecules C4HSL and C14HSL [2],
and assigned C14HSL production to the orange strain and C4HSL to the blue strain.

In the oscillator topology, we call the non-induced strain the “long” strain (i.e., it is the strain
whose signaling is not repressed by LacI). The QS signal produced by the long strain reaches the
other strain to repress its QS production and induce its division length reduction (see Fig 5A).
As expected from the simulations shown in Fig 3, we observed in ABM oscillator simulations that
the short strain cooperatively ejected the long strain via the bulk forcing mechanism. Thus, as the
fraction of the long strain in the trap decreased, the QS signal received by the short strain decreased
and eventually fell below HT , turning off both division-length reduction and its QS signal repression
by negative-feedback. At this point QS production in the previously induced (short) strain switched
on, triggering division length reduction and repression of QS signaling in the previously uninduced
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Figure 6. Consortial population relaxation oscillator. (A) Reduced oscillator model
for Q = 0 (1−Q = 1), which represents reduced cell length in strain 2. In this state, strain
2 represses strain 1 by negative motion of the strain interface x (ẋ < 0 represents ejection of
strain 1), which itself acts with positive feedback to increase the rate of motion. Signal H1
received from strain 1 activates the division length reduction and will diminish by negative
feedback (since the strain 1 population is decreasing) eventually asserting the Hill function
L−

1 to change state to Q = 1. (B) Complementary model for state Q = 1. Reduced cell
length in strain 1 represses strain 2 by positive motion of the interface x (ẋ > 0) eventually
asserting the Hill function L−

2 to revert the state to Q = 0, in turn. (C) Top panel: Interface
position 1− x and complementary states 1−Q (orange) and Q (blue) plotted vs. time for
K1 = 0.2, K2 = 0.8, and n = 8 (see Eqs. 2-3; cf. Fig 5B). Bottom panel: Hill functions
L−

1,2 fire when the interface position reaches the respective thresholds, thereby switching the
state of the memory circuit. The relaxation oscillator requires separation of the switching
and front-travel timescales (see main text).

(long) strain. At this point the two strains exchange places, starting the next half-cycle in the
oscillation.

This negative feedback topology produced sustained oscillations in the ABM. In Fig 5B, we plot
the average LacI repressor concentration of each strain and the resulting strain fraction time series
for an ABM simulation with division length reduction factor a = 0.6. A kymograph (Fig 5C) of
the order parameter q (averaged as in Fig 3) shows the temporal transitions of cell ordering and
resultant cooperative ejection of the majority strain in each oscillation half-period. We found that
oscillations sustained indefinitely when the parameters were properly tuned, but with HT set too
low, extinction of a strain would result (data not shown).

Reduced consortial oscillator model. To illuminate key features of the ABM consortial oscillator, we
next describe a fast-slow dynamical system that captures the ABM consortial oscillator dynamics
and their dependence on various timescales. In this effective model, the dynamics manifest as a
relaxation oscillation. The driver of the oscillation is a state variable, Q, which represents the
division-length state of the microbial strains. We let Q = 1 represent strain 1 (blue) being in
a reduced division length state, while 1 − Q = 1 (i.e., Q = 0) represents the same for strain 2
(orange). Comparing with Fig 1A,B, Q is thus a proxy for the state of the QS promoter for LacI
protein concentration, which is ON concomitantly with reduced division length. and determines
the motion of the interface between the strains.

We simplified the trap geometry to one spatial dimension and model the strain-interface front
position, x ∈ [0, 1]. The dynamics for Q depend both on the proxy for concentration of strain 1
(respectively, strain 2) QS signals, which we assume proportional to x (1− x), and to Q itself. In
our reduced model we capture the QS sensitivity of each strain using ‘switching positions’: When x
exceeds or falls below a specific value, denoted K1,2, the strains switch their division-length states
through the action of an inverting Hill function, L−

1,2, that represents the QS production promoter
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(repressed by LacI) in each strain. We thus capture the hysteresis of the toggle switch topology,
Fig 5A, with the bistability of the switch state Q in the region x between switching locations.

Our reduced consortial oscillator model is
ẋ = Qx− (1−Q)(1− x)(2)

Q̇ = 1
ε

(
−QL−

1 (x) + (1−Q)L−
2 (x)

)
,(3)

where L−
1,2 are decreasing Hill functions of 1−x and x, respectively. The Hill functions are defined

with QS switching locations at x = K1,K2 ∈ [0, 1], such that

(4) L−
1 (x) := 1

1 +
(

1−x
1−K2

)n L−
2 (x) := 1

1 +
(
x
K1

)n ,
where n is the Hill exponent. The oscillations require K1 < K2, and K2 − K1 set to ensure
separation of the timescales and sufficient switching time near the edges of the trap. Our reduced
model assumes ẋ dynamics are slow relative to ε (Eq. 3), which models the physiological timescale
to effect changes of aspect ratio once the front position, x, approaches either of the values K1,K2.
In the limit of large n, and small ε, the interface velocity, ẋ, changes to positive (respectively,
negative) as soon as x < K1 (x > K2). The values K1,2 thus define the two halves of the relaxation
oscillation duty cycle. A simulation of Eqs. 2-3 shows good agreement with our ABM result (Fig
6C).

Discussion

Controlling the spatiotemporal population dynamics of distributed, microbial systems is essential
for optimizing their functionality. Here we demonstrated how bacterial cell morphology can be
used to control spatiotemporal strain dynamics in the close-packed, monolayer environment of a
microfluidic trap. We used both agent-based and lattice modeling to show that reducing average
cell division-length in a two-strain consortium confers a “mechanical fitness” advantage to the
shorter-length strain. This is in contrast to previous approaches to strain fraction control achieved
primarily via exogenous signals [19, 25], or induced cell lysis [40, 61].

We showed a strain in a consortium can achieve a competitive advantage via two distinct mech-
anisms depending on the initial configuration of the strains. Using our agent-based model (ABM),
we measured the order parameter, q, and observed its connection to the occurrence of horizontally
oriented cells in the smaller length strain when two strains are intermingled in the trap, and in-
creased lateral force imbalance when the two strains occupied different portions of the trap. Both
configurations led to the ejection of the WT strain to the microfluidic trap open boundaries. The
lattice model (LM) showed that both mechanisms can be explained by changes in a single param-
eter, the rotation probability, prot. This parameter determined both the probability of invasion of
a neighboring, opposite-strain column when the strains were intermingled, as well as the average
lateral bulk force one strain exercised on the other, when the two strains occupied different parts
of the trap.

Our ABM strain fraction oscillator and effective relaxation oscillation description showed that
population control can be achieved using of a negative-feedback QS signaling topology in an experi-
mentally relevant genetic circuit [2]. With a small modification to our circuit, stable strain fractions
could be programmed by adding exogenous inducer to, for example, repress the division length pro-
tein expression in one of the strains. Similarly, by removing the division-length circuit altogether
in one of the strains, a maximum population size could result from single-ended control in some
range of initial conditions. We suggest that desired strain fractions could be robustly generated
under a wide range of initial population distributions. Such control of consortium composition is a
fundamental problem in synthetic biology [10,52], and earlier solutions relied primarily on the use
of exogenous control [19, 25].
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12 EMERGENT SPATIOTEMPORAL POPULATION DYNAMICS WITH CELL-LENGTH CONTROL

Understanding and controlling the behavior of distributed microbial systems is essential for
engineering information exchange between constituent strains [26], ecological dynamics [12,46,63],
metabolic resource allocation [27, 44], microbial social interactions [37]. The active control of cell
morphology provides a way to engineer the spatio-temporal dynamics in synthetic systems, and to
understand the patterns that emerge in microbial communities in nature.

Methods

Agent-based model. Our ABM captures mechanical interactions between cells growing in a
microfluidic trap as well as the membrane and extracellular diffusion of signaling molecules pro-
duced intracellularly. We used this modeling framework to understand how changes in average
cell length affect nematic cell ordering—and therefore emergent dynamics—in both homogeneous
(single-strain) simulations and competing (two-strain) simulations. For two-strain simulations, we
altered the mean division length of a strain with simulated external induction or by auto-regulatory
control with quorum-sensing signaling topologies.
Cell growth, division, and induction. We modeled cell dynamics within a simulated, open-walled
microfluidic device or trap. In ABM simulations, we assumed a monolayer rectangular trapping
region with dimensions 20 × 100 µm (height × width, see Fig 1–3). The trapping region is open
on all sides to allow cell outflow. Two flow channels lie along the long edges of the device to
provide nutrients and remove cells that exit the trapping region, thereby keeping the cell population
approximately constant. Variants of this microfluidic design have been used in several published
studies [3, 10, 13, 33]. We also used quorum-sensing communication between strains and in this
case modeled the flow channels as well-mixed compartments of signaling concentration. That is,
we ignored directional effects of the flow for simplicity [10, 13, 33]. Our agent-based model thus
simulated a population of growing and dividing E. coli cells in a 2D microfluidic trap environment
using a mechanical interaction algorithm we described previously [60]. Here, we extended our
previous approach to include bacterial quorum-sensing (QS) communication by integrating the
finite-element software Fenics for numerical solution of the diffusion equation (see below).

Cells were modeled as 2D spherocylinders of constant, 1 µm width. Each cell grew exponentially
in length with a doubling time of 20 minutes [10, 33]. In order to prevent division synchronization
across the population, when a mother cell of length l divided, the two daughter cells were assigned
random birth lengths ε0l and (1 − ε0)l, where ε0 was sampled independently at each division
from a uniform distribution on [0.45, 0.55]. We set the division length of each daughter cell to
ld = (2l0)1/2(l̄d)1/2, where l0 denotes the daughter’s birth length and l̄d denotes the mean division
length for the strain [4]. The mean division length, l̄d, was modulated in a strain in our ABM
simulations by simulated external induction or by using a quorum-sensing communication network
between two strains. We divided the intracellular proteins and signaling molecules in the mother
cell between the two daughters in proportion to their birth length.

For two-strain simulations, we initialized the ABM in two different ways and colored the strains
orange and blue for identification (see Fig 2, 3) in simulation snapshots. We used in one case a
spatially random initial seeding inside the trapping region (Fig 2). We chose the strain type of
each seeded cell independently and with equal probability, which produced interchanging stripes of
the two strains (Fig 2a) [3]. In another case we seeded the trapping region by placing blue cells in
the left half and orange cells in the right half, which usually produced a single interface between
the strains (Fig 3). In single-strain simulations, we used a neutral color for cell visualization (see
Fig 1). Single-strain simulations were checked for strain fraction bias due to cell seeding with a
negative control simulation (data not shown).

To investigate how cell length affects emergent dynamics in two-strain consortia, we reduced the
mean division length (after a stabilization period for the population ratio) in the orange strain by a
factor a ∈ [0.6, 0.85], so that l̄d,orange(t) = al̄d,blue(t) for t > t0 (the width of the cells is the same for
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both strains for the duration of the simulations, see Fig 2, 3). Thus, the parameter a determined
the difference in cell length between the two strains.
Quorum-sensing communication. To model inter-strain communication and feedback topologies for
strain fraction control, we extended our ABM to include diffusive intercellular signaling by using
the open-source finite element software Fenics [1, 34, 41]. We coupled intercellular signaling to
the ABM by using an ODE for membrane diffusion of QS signals: For each cell of a strain, the
intracellular QS concentration, H, depended on production at rate α (which in general depends on
the signal coupling from the other strain), first-order membrane diffusion kinetics at rate d, and the
local external QS concentration, He. To model internal QS concentrations for a cell i we integrated
the following differential equations for each QS molecule type in order to update both internal and
external QS concentrations:

Ḣ = α− d(H −He)− γdH(5)

Ḣe = ρi
ρe
d(H −He) +D∇2He.(6)

We thus assumed a well-mixed cell compartment and used the local extracellular concentration,
He(xi, yi), at the cell’s center, (xi, yi) in Eq (5). Here γd is the cell dilution rate, D is the extracel-
lular diffusion rate, and the dimensionless volume fraction ratio ρi

ρe
accounts for conservation of QS

molecules in the local cell environment [10,33,47] (ρi is the cell volume fraction, which we computed
from simulations and set to 0.7, with ρe = 1− ρi). All concentrations are generally functions of x,
y, and t, which we omit to simplify notation.

We updated the external QS molecule concentrations over each time step by solving the 2D
diffusion equation over the trapping region using the integrated Fenics solver. To simulate the
perimeter of the trapping region and storage of signaling molecules in the flow channels, we used a
splitting method whereby signal flux from the trapping region was integrated into a homogeneous
channel volume, and diluted at rate γ due to media flow [10, 13, 33, 48]. For two-strain consortia,
we coupled signaling strength to cell-length control using a negative feedback topology. For strain
1, we reduced the mean division length of this strain when H2 > HT , where H2 is the measured
intracellular QS signal from strain 2, andHT is a threshold value (similarly for Strain 2). Simulation
code for our ABM and the integrated Fenics solver is open-source and available on Github.

Lattice model. To illuminate the mechanisms that drive patterning in bacterial collectives, we
developed a lattice model (LM) that captures the essential features of cell growth and strain-strain
interactions. Lattice models have a storied history in biological modeling, and provide a valuable
framework for modeling complex spatiotemporal dynamics in biological tissues [9, 15, 16, 24, 35, 36,
57]. As is typical of lattice models, our LM gains tractability at the expense of some fidelity to
reality.

We modeled the rectangular microfluidic trap as anM×N lattice in N2. In the model, locations in
the lattice were occupied by vertically or horizontally oriented cells belonging to one of two strains.
Cells grew at location-dependent rates, as defined below. Upon division, one of the daughter cells
replaced the mother cell, while the second daughter cell displaced a neighbor, and thus moved every
cell in the direction of growth by one lattice site (see Fig 7a). We modeled traps with no walls,
so any cell that crossed the boundary of the lattice disappeared from the system. Times between
divisions in the trap were independent of one another, and exponentially distributed, with mean
determined by the sum of growth rates of the cells in the trap. The locations of the division events
were also independent of one another.

The assumption that cell division displaces the entire half-column or half-row in the direction of
growth is strong. The impact of cell division may result in only local displacement [7, 42, 59, 60].
Nevertheless, we found that changing how many cells are moved after a cell division does not
significantly alter qualitative behavior in our LM simulations.
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blue strain

orange strain

length

lengthaspect ratio =

A

B C D

width

width

prot,k 1− prot,k

prot,b < prot,o

Figure 7. The lattice model (LM). (A) In the LM cell growth is directional and
location-dependent: The horizontal cell outlined in red can grow to the right or left at
location-dependent rates. The red arrow indicates that the leftward growth rate of the out-
lined cell is less than its rightward growth rate because this cell is located on the right side
of the lattice. The black arrow indicates direction of cell division. When the cell divides,
one daughter cell inherits the lattice position and orientation of the mother cell. The second
daughter cell may rotate and occupies the lattice position immediately to the right of the
mother cell, thereby displacing all existing cells in the direction of division by one unit. Cells
that cross the lattice boundary are removed. (B) Schematic of a capsule-shaped bacterial
cell. The cell’s aspect ratio is the ratio of its length to its width. (C) In two-strain LM
simulations, the second daughter of a mother cell of strain type k rotates with probability
prot,k if the 8 neighbors of the mother cell share her strain type. Otherwise, the second
daughter rotates with a probability taken as the average of her probability of rotation and
her 8 neighbors’ probabilities of rotation (see text for details). (D) In agreement with
the effect of a smaller division length in the ABM, we assume that a smaller aspect ratio
corresponds to higher rotation probability in the LM.

We denote by v±(i) the growth rate of a vertical cell in the ith row toward the top (+) or bottom
(–) boundary, and by h±(j) the growth rate of a horizontal cell in the jth column toward the right
(+) or left (–) boundary. We assumed that growth rates were modulated by the population that
lies between a given cell and the closest boundary in the direction of growth, and hence that the
growth rate of a vertical (horizontal) cell depended only on the row (column) in which it resided.
We used a single parameter κ ∈ [0,∞) to characterize how strongly the population modulated
growth, and set

v+(i) = λe(−κ(M−i)) v−(i) = λe(−κ(i−1))(7a)

h+(j) = λe(−κ(N−j)) h−(j) = λe(−κ(j−1)).(7b)
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Using different decaying functions for v± and h± did not alter LM dynamics significantly [30]. Since
the growth rate determines the rate at which a cell divides we use the two terms interchangeably.
Cell division and rotation. Previous simulations and experiments have shown that in crowded en-
vironments cell orientations evolve dynamically due to interactions with neighbors [7,11,30,42,59].
Rotational freedom increases as characteristic cell lengths decrease [11, 56]. Our ABM simulations
also showed that nematic disorder grows as mean cell division length decreases (See Fig 1). Since
cells in the LM do not have physical dimensions, we introduced rotation probabilities, prot,k, that
determined the likelihood that cells in strain k change orientation from vertical to horizontal, or
vice versa. Therefore, based on our ABM results, and previous experimental observations, we
assumed that the probability of rotation increased monotonically with a decrease in mean cell divi-
sion length. The precise dependence of prot,k on cell morphology is complicated. For simplicity we
assumed that the intrinsic rotation probability of a cell is 1− prot,k = a, where a is the normalized
average division length of the smaller strain. As we discuss below, this probability can be affected
by a cell’s neighbors.

In our simulations, a cell rotation only occurred at the moment of cell division. When a mother
cell divided, the daughter cell that occupied the lattice site vacated by the mother did not rotate.
The orientation of the daughter cell that displaced a neighbor differed from that of the mother
cell with probability prot,k when the mother cell and her eight neighbors shared the same strain
type (see Fig 7C). In crowded environments, the rotation dynamics of a given cell depends on the
morphology of surrounding cells: If the surrounding cells are less likely to rotate, and hence better
aligned, the given cell will be less likely to rotate as well. To account for this, in two-strain LM
simulations, we set the displacing daughter’s rotation probability to the average rotation probability
of itself and its eight neighbors. We implemented this model using a Gillespie algorithm [23] with
the following events and corresponding rates: A a vertical (horizontal) cell of strain k at location
(i, j) in the lattice displaced a neighbor at location (i, j ± 1) (respectively (i± 1, j)) by producing
a copy of equal orientation with probability v±(i)(1 − prot,k)∆t (respectively h±(j)(1 − prot,k)∆t)
and of differing orientation with probability v±(i)prot,k∆t (respectively h±(j)prot,k∆t). Our LM
results coincided remarkably well with our ABM results (see Results and Discussion). As with
ABM simulations, we assigned a unique color to each strain for visualization.
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