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A B S T R A C T

This article develops a closed-loop multi-scale model for axon length regulation based on a frequency-
dependent negative feedback mechanism. It builds on earlier models by linking molecular motor dynamics
to signaling delays that then determine signal oscillation period. The signal oscillation is treated as a front
end for a signaling pathway that modulates axonal length. This model is used to demonstrate the feasibility of
such a mechanism and is tested against two previously published reports in which experimental manipulations
were performed that resulted in axon growth. The model captures these observations and yields an expression
for equilibrium axonal length. One major prediction of the model is that increasing motor density in the body
of an axon results in axonal growth—this idea has not yet been explored experimentally.
1. Introduction

An axon is a long protrusion from the cell body of a neuron whose
length can be hundreds or thousands of times larger than the diameter
of the cell body. It transmits electrical impulses from the cell body to
downstream target neurons. In the first stage of the development of
an axon, a growth cone forms and leads its spontaneous extension. In
the second stage, the axon tip approaches its targets and synapses ulti-
mately form [1,2]. The growth rate during this second stage depends on
factors released by the target cells [3,4]. What determines the growth
rate during the first stage? This question is the focus of this study.

An axon is composed of microtubules in its center, membrane wrap-
ping the microtubules, and cytosol between the microtubules and the
membrane (Fig. 1). Microtubules are directionally polarized filaments
with biophysically distinguishable ‘‘+’’ ends and ‘‘–’’ ends [5]. They
provide structural integrity for cells and form filaments upon which
molecular motors move to transport various cargo such as proteins that
can act as signaling molecules [6–8]. The polarity at a given end of the
microtubule dictates what kind of molecular motor will travel along
in a given direction. For example, kinesins generally walk in the ‘‘+’’
direction along microtubules whereas dyneins tend to walk in the ‘‘–’’
direction. Motor dynamics along microtubules has been the focus of
many theoretical investigations in recent years [9–12].

Recently, Rishal et al. proposed a possible mechanism for axon
length regulation [13–15] based on bidirectional motor transport
(Fig. 1). They hypothesized that an excitatory signal E was carried by
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kinesins from the cell body to the axon tip, where it induced an in-
hibitory signal I. This signal was assumed to be transported by dyneins
from the tip to the cell body and suppress the signal E. With sufficient
time delays, oscillations in both signals arise, which they proposed was
the key to axon length sensing. In particular, information regarding
axonal length could be encoded in the oscillation frequency, which
could be used to regulate axon growth. Encoding information with
oscillatory signals has been shown to be advantageous over constant
signals in some biological systems [16,17].

Based on this hypothesis, Karamched et al. developed a delayed
feedback model that was used to show that oscillations appeared
when the axon length crossed some threshold (a supercritical Hopf
bifurcation point) and demonstrated a negative correlation between
the frequency and the length [18]. The model also replicated the
experimental result that knockdown of either kinesin or dynein caused
axon growth [13]. A follow-up study by Folz et al. added downstream
signaling pathways to the model of Karamched et al. that provided
a possible mechanism by which a neuron could decode the length
information in the oscillating signals [19]. In spite of the progress in
modeling, several aspects of this frequency-dependent length regulation
remain unclear. First, neither model includes the possible influence of
motor–motor interactions upon motor densities in the axon and thus
on the delays. Second, a follow-up experimental study by Perry et al.
showed that importin-𝛽1 mRNA and its protein product (importin 𝛽1)
could serve as the excitatory and inhibitory signal, respectively [20].
Disrupting the interaction between the mRNA and its carriers (kinesins)
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Fig. 1. A schematic diagram showing the structure of an axon and the delayed-feedback mechanism proposed by Rishal et al. [13]. The axon is composed of microtubules,
cytosol and membrane. The molecular motors, kinesins and dyneins, move along the microtubules in opposite directions and carry the excitatory signal E and inhibitory signal I,
respectively. After arriving at the axon tip, the signal E promotes the production of the signal I, which suppresses the production of the signal E when it reaches the cell body.
w
was shown to induce axon growth. This is a key test of the axon growth
mechanism, and it is not clear whether this can be explained by the
frequency-dependent mechanism.

In this article, we begin with the model of Karamched et al. and
build on it by explicitly considering the transport of E and I signals
by kinesin and dynein motors and by considering interactions between
motors. This allows us to determine the relationship between axon
length and the time delays that is key to the oscillation mechanism. We
then form a closed-loop system that allows us to simulate experimental
manipulations performed in [13,20]. The closed-loop model also facili-
tates an analysis of how the equilibrium axon length varies with system
parameters, and we demonstrate step-like changes that can be linked
to the initiation/termination of oscillations in the E-I system.

2. How are oscillations in signaling molecules generated?

The basis for axon length detection in the mechanism postulated
in [13] relies on oscillations in the concentration of signaling molecules.
It is postulated that these oscillations are the result of delayed negative
feedback of an inhibitory signaling molecule I on an excitatory signal-
ing molecule E. To demonstrate this mathematically, we use a system
of delay differential equations that describe the processes in Fig. 1.
Let 𝐸𝑏, 𝐼𝑏 and 𝐸𝑡, 𝐼𝑡 be the concentrations of E and I in the cell body
and axon tip, respectively. Their temporal evolution is described by the
following:
d𝐸𝑏
d𝑡

= 𝑝𝐸,𝑏(𝑡) − 𝑑𝐸,𝑏𝐸𝑏(𝑡) −𝑤𝐸𝐽𝐾𝐸𝑏(𝑡), (1)

d𝐸𝑡
d𝑡

= −𝑑𝐸,𝑡𝐸𝑡(𝑡) + 𝑟𝑉 𝑤𝐸𝐽𝐾𝐸𝑏(𝑡 − 𝜏𝐾 ), (2)

d𝐼𝑏
d𝑡

= −𝑑𝐼,𝑏𝐼𝑏(𝑡) +𝑤𝐼𝐽𝐷𝐼𝑡(𝑡 − 𝜏𝐷)∕𝑟𝑉 , (3)

d𝐼𝑡
d𝑡

= 𝑝𝐼,𝑡(𝑡) − 𝑑𝐼,𝑡𝐼𝑡(𝑡) −𝑤𝐼𝐽𝐷𝐼𝑡(𝑡), (4)

here 𝑝𝐸,𝑏 and 𝑝𝐼,𝑡 are the production rates of E and I. A Hill function
describes the activation of I by E:

𝐼,𝑡 = 𝑝𝐼𝐻
(

𝐸𝑡, 𝐾𝐼 , 𝑛𝐼
)

, (5)

here

(𝑥,𝐾, 𝑛) = 𝑥𝑛

𝑥𝑛 +𝐾𝑛 . (6)

In Eq. (5), 𝑝𝐼 is the maximum production rate, 𝐾𝐼 is the half-activation
level, and 𝑛𝐼 is the Hill coefficient for the signal I. A Hill function also
describes the suppression of E by I:

𝑝 = 𝑝 (1 −𝐻
(

𝐼 ,𝐾 , 𝑛
)

), (7)
𝐸,𝑏 𝐸 𝑏 𝐸 𝐸
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here 𝑝𝐸 is the unsuppressed production rate and the parameters 𝐾𝐸
and 𝑛𝐸 are analogous to 𝐾𝐼 and 𝑛𝐼 . The term 𝑤𝐸𝐽𝐾𝐸𝑏(𝑡) in Eq. (1)
reflects the transport of E away from the cell body by kinesin motors.
The quantity 𝐽𝐾 is the current of the kinesin motors through the axon;
it is the number of kinesin motors entering the axon or arriving at the
axon tip per unit time. The quantity 𝑤𝐸 represents the average number
of E molecules carried by a single kinesin and reflects the binding
affinity of E to kinesin motors. The delay 𝜏𝐾 in Eq. (2) represents the
average time for a kinesin motor to traverse the distance from the cell
body to the axon tip, so the term 𝑟𝑉 𝑤𝐸𝐽𝐾𝐸𝑏(𝑡 − 𝜏𝐾 ) corresponds to
the arrival of the signal E at the tip. This term includes the volume
fraction, 𝑟𝑉 , of the axon body to the axon tip. Similarly, 𝑤𝐼𝐽𝐷𝐼𝑡(𝑡) and
𝑤𝐼𝐽𝐷𝐼𝑡(𝑡 − 𝜏𝐷)∕𝑟𝑉 in Eqs. (4) and (3) describe retrograde transport of
I by dynein motors. The terms 𝑑𝐸,𝑏𝐸𝑏, 𝑑𝐸,𝑡𝐸𝑡, 𝑑𝐼,𝑏𝐼𝑏 and 𝑑𝐼,𝑡𝐼𝑡 describe
natural degradation of E and I.

The current model improves on an earlier one [18] by explicitly
describing the dependence of the production of each signal on the
concentration of the other signal (Eqs. (5) and (7)). It is motivated by
the experimental finding that importin-𝛽1 mRNA may act as the signal
E, whose product (importin-𝛽1 protein) may act as the signal I [20].
The translation of importin-𝛽1 occurs at the axon tip, thereby spatially
separating the mRNA production from the protein production. It is not
yet clear how importin-𝛽1 protein inhibits the production of importin-
𝛽1 mRNA, but it is likely through repression of gene transcription. Our
model does not specify the identity of the signaling molecules, or the
means of production. Rather, it is more general, relying only on the
spatial segregation of the E and I production sites and the mutual
feedback between the two.

We use a dimensionless form of Eqs. (1)–(4), as shown in the next
section. They are very similar, except that the volume ratio 𝑟𝑉 scales
out. To investigate the effects of changes in the time delays on sys-
tem dynamics, the dimensionless equations, Eqs. (20)–(23), are solved
numerically by using the ‘‘dde23’’ solver in MATLAB [21]. The initial
conditions are 𝐸𝑏(𝑡) = 𝐸𝑡(𝑡) for 𝑡 ∈ [−𝜏𝐾 , 0] and 𝐼𝑏(𝑡) = 𝐼𝑡(𝑡) = 0 for
𝑡 ∈ [−𝜏𝐷, 0]. The values of the delays are given in the caption of Fig. 2,
and other parameter values are given in Table 1. For small time delays,
numerical calculation shows that there is a stable equilibrium following
transient oscillations (Fig. 2A). As the delays are increased, the stable
equilibrium bifurcates into a limit cycle as the system undergoes a
supercritical Hopf bifurcation. The oscillations are nearly sinusoidal
for delays close to the critical values for oscillation initiation (Fig. 2B)
and approach a square wave form as the delays are increased further
(Fig. 2C). In the latter case, each signal remains at its maximal or
minimal value for a duration of approximately 𝜏𝐾 + 𝜏𝐷 time units, with

very rapid switches between (Fig. 2C). This is shown in more detail
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Fig. 2. Solutions of the delayed feedback model for different delay values. (A) 𝜏𝐾 = 𝜏𝐷 = 0.2. (B) 𝜏𝐾 = 𝜏𝐷 = 2. (C) 𝜏𝐾 = 𝜏𝐷 = 20. Other parameter values are given in Table 1.
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Fig. 3. Square-wave oscillations that occur when 𝜏𝐾 = 𝜏𝐷 = 20. The oscillation period
is approximately 2(𝜏𝐾 + 𝜏𝐷).

n Fig. 3, which includes all four state variables. It can be seen that 𝐸𝑏
starts to grow rapidly around 𝑡 = 850 (black curve). After time 𝜏𝐾 time
units, the signal E reaches the axon tip, leading to a rapid increase in
𝐸𝑡 (blue curve). This causes the production of the signal I at the tip,
corresponding to the increase in 𝐼𝑡 (green curve). The signal I then
travels retrogradely and reaches the cell body after 𝜏𝐷. This leads to
a quick increase in 𝐼𝑏 (red curve) and a decrease in 𝐸𝑏 (black curve).
The axon tip senses the low level of 𝐸𝑏 after 𝜏𝐾 and stops producing
the signal I, resulting in a drop in 𝐼𝑡. This drop leads to a drop in I at
the cell body after 𝜏𝐷 time units, allowing 𝐸𝑏 to rise again and starting
a new cycle. Therefore, the oscillation period 𝑇 is

𝑇 ≈ 2(𝜏𝐾 + 𝜏𝐷). (8)

3. What is the relationship between the oscillation period and the
axon length?

To relate the signal oscillation period with axonal length, we next
model the transportation of the signals along an axon by molecular
motors as a Totally Asymmetric Simple Exclusion Process (TASEP) [22–
25], which is illustrated in Fig. 4. This enables us to relate the de-
lays to the axon length. Furthermore, the TASEP provides relations
between the motor currents (𝐽𝐾 and 𝐽𝐷) and the motor densities.
These relations are combined with the delayed feedback model to
describe how the oscillation period varies with various biophysical
parameters—specifically bulk motor density and motor-signal affinity.

Multiple microtubule tracks traverse the axon. The molecular mo-
tors kinesin and dynein traverse these tracks with periods of ballistic
motion interspersed with periods of track switching [26]. However,
it has been shown that the motor transport along multiple tracks is
mathematically equivalent to motor transport along a single track, in
 w

3

an average sense [27]. We therefore model the motion of kinesin along
a single track and dynein along a second track. The kinesin and dynein
dynamics are each described with a TASEP that consists of a lane of
lattice sites and multiple particles that move along the lane (see Fig. 5).
Specifically, a particle at some site can only jump to the next site if the
latter is unoccupied. The probability for such a successful jump within
a small time duration d𝑡 is 𝜈d𝑡, where 𝜈 is the hopping rate constant.
Particles enter the lane through the first site and leave from the last,
and the corresponding rate constants are 𝜈enter and 𝜈exit. We assume
𝜈enter = 𝜈exit = 𝜈.

To derive a relation between 𝜏𝐾 and the TASEP parameters, we
invoke a mean-field approximation [28]. Let 𝑁 be the total number
of sites of the lane for the kinesin motors and 𝜈𝐾 be the hopping rate
(we assume that it is the same with or without cargo). The state of site
𝑖 can be described by an occupation number 𝑂𝐾,𝑖(𝑡), defined as

𝑂𝐾,𝑖(𝑡) =

{

0 site 𝑖 is vacant,
1 site 𝑖 is occupied.

(9)

With time discretized into units of d𝑡, the conditional probability for a
kinesin to jump to site 𝑖 + 1 at 𝑡0 + d𝑡, provided it is at site 𝑖 at 𝑡0, is
iven by

r{at site 𝑖 + 1 at 𝑡0 + d𝑡|at site 𝑖 at 𝑡0} = (1 − 𝑂𝐾,𝑖+1(𝑡0))𝜈𝐾d𝑡. (10)

Then the conditional probability for the kinesin to jump to site 𝑖+ 1 at
0 + 2d𝑡, provided that it is at site 𝑖 at 𝑡0, is

Pr{at site 𝑖 + 1 at 𝑡0 + 2d𝑡|at site 𝑖 at 𝑡0}
= Pr{at site 𝑖 + 1 at 𝑡0 + 2d𝑡|at site 𝑖 at 𝑡0 + d𝑡}
⋅ Pr{at site 𝑖 at 𝑡0 + d𝑡|at site 𝑖 at 𝑡0}

= (1 − 𝑂𝐾,𝑖+1(𝑡0 + d𝑡))𝜈𝐾d𝑡[1 − (1 − 𝑂𝐾,𝑖+1(𝑡0))𝜈𝐾d𝑡]. (11)

ontinuing this process, the conditional probability for the kinesin to
ump to site 𝑖 + 1 at 𝑡0 + 𝑛d𝑡, provided that it is at site 𝑖 at 𝑡0, is

Pr{at site 𝑖 + 1 at 𝑡0 + 𝑛d𝑡|at site 𝑖 at 𝑡0}

= (1 − 𝑂𝐾,𝑖+1(𝑡0 + (𝑛 − 1)d𝑡))𝜈𝐾d𝑡
𝑛−1
∏

𝑖=1
[1 − (1 − 𝑂𝐾,𝑖+1(𝑡0 + (𝑖 − 1)d𝑡))𝜈𝐾d𝑡].

(12)
et 𝜌𝐾,𝑖 be the ensemble average of 𝑂𝐾,𝑖(𝑡) at equilibrium. By the mean-
ield approximation [28], the probability for a kinesin motor to stay at
ite 𝑖 for 𝑛d𝑡 time units can be calculated by replacing all the occupation
umbers at different times by their ensemble average 𝜌𝐾,𝑖+1, namely

r{Stay for 𝑛d𝑡} = (1 − 𝜌𝐾,𝑖+1)𝜈𝐾d𝑡(1 − (1 − 𝜌𝐾,𝑖+1)𝜈𝐾d𝑡)𝑛−1, (13)

e also set 𝑡0 = 0 since the TASEP is autonomous. The average duration
𝑖 that a kinesin stays at site 𝑖 is then given by

𝑖 ≡
∞
∑

𝑛=1
𝑛d𝑡(1 − 𝜌𝐾,𝑖+1)𝜈𝐾d𝑡(1 − (1 − 𝜌𝐾,𝑖+1)𝜈𝐾d𝑡)𝑛−1

= 1
𝜈𝐾 (1 − 𝜌𝐾,𝑖+1)

, (14)

here the second equality is proved in Appendix A.
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Fig. 4. The Totally Asymmetric Simple Exclusion Process (TASEP). In this process, particles enter a lane of lattice sites with rate 𝜈enter and exit with rate 𝜈exit. After entry, each
article hops to its next site with rate 𝜈, provided the site is empty.
Fig. 5. Bidirectional transport of signaling molecules along an axon is the basis of the delayed feedback model. Excitatory signaling molecules E (red hexagons) are produced in
the cell body and transported by kinesins (blue circles) to the axon tip, where they promote the production of inhibitory signaling molecules I (grey triangles). These molecules are
carried by dyneins (green circles) to the cell body where they suppress the production of the signal E. The degradation of the E and I molecules is not shown. The microtubules
along which the motors travel are modeled as two lanes of lattice sites.
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It has been shown that 𝜌𝐾,𝑖 is nearly uniform for most bulk sites in
the lane [29–31]. There can be boundary layers at either the entrance
or the exit or both, but we ignore their contribution to the total
residence time of a kinesin within the lane, i.e., the delay 𝜏𝐾 , because
the boundary layers encompass only a small number of sites. Let 𝜌𝐾,bulk
be the constant for the bulk sites, then using this approximation, the
total time required for a kinesin molecule to move from the axon body
to its tip is

𝜏𝐾 =
𝑁
∑

𝑖=1
𝑟𝑖 =

𝑁
𝜈𝐾 (1 − 𝜌𝐾,bulk)

. (15)

Let 𝐿 be the axon length and 𝑎 the size of a single lattice site, then
𝑁 = 𝐿∕𝑎 and Eq. (15) becomes

𝜏𝐾 = 𝐿
𝑎𝜈𝐾 (1 − 𝜌𝐾,bulk)

. (16)

Thus, 𝜏𝐾 is proportional to 𝐿, which coincides with previous mod-
els [18,19]. However, it also indicates that 𝜏𝐾 becomes large if the
motors crowd the lane (i.e., if 𝜌𝐾,bulk ≈ 1), which was not considered
n previous models. From an identical derivation,

𝐷 = 𝐿
𝑎𝜈𝐷(1 − 𝜌𝐷,bulk)

, (17)

here 𝜈𝐷 is the hopping rate of the dynein motors and 𝜌𝐷,bulk is the
verage of the occupation numbers for the bulk sites in steady state. We
efer to 𝜌𝐾,bulk and 𝜌𝐷,bulk as the bulk densities of kinesin and dynein
otors, respectively.

Like 𝜏𝐾 , the current 𝐽𝐾 of the kinesin motors also depends on
𝜌𝐾,bulk [27,29–31], whose mean field approximation to leading order
in 𝑎 is [23]

𝐽𝐾 = 𝜈𝐾𝜌𝐾,bulk(1 − 𝜌𝐾,bulk). (18)

This relation indicates that 𝐽𝐾 is symmetric about its maximum value,
which occurs at 𝜌𝐾,bulk = 0.5. The decline in 𝐽𝐾 after 𝜌𝐾,bulk passes 0.5
reflects crowding of the motors. The approximation for 𝐽𝐷 is the same:

𝐽 = 𝜈 𝜌 (1 − 𝜌 ). (19)
𝐷 𝐷 𝐷,bulk 𝐷,bulk

4

The times required for motors to move from one end of the axon
to the other, 𝜏𝐾 and 𝜏𝐷, become time delays for the signaling molecule
concentrations. With the above relations for the delays and currents, a
dimensionless system of delay differential equations, with characteristic
scales detailed in Appendix B, is:

d𝐸𝑏(𝑡)
d𝑡

= 𝑝𝐸,𝑏(𝑡) − 𝑑𝐸,𝑏𝐸𝑏(𝑡) −𝑤𝐸𝐽𝐾𝐸𝑏(𝑡), (20)

d𝐸𝑡(𝑡)
d𝑡

= −𝑑𝐸,𝑡𝐸𝑡(𝑡) +𝑤𝐸𝐽𝐾𝐸𝑏(𝑡 − 𝜏𝐾 ), (21)

d𝐼𝑏(𝑡)
d𝑡

= −𝑑𝐼,𝑏𝐼𝑏(𝑡) +𝑤𝐼𝐽𝐷𝐼𝑡(𝑡 − 𝜏𝐷), (22)

d𝐼𝑡(𝑡)
d𝑡

= 𝑝𝐼,𝑡(𝑡) − 𝑑𝐼,𝑡𝐼𝑡(𝑡) −𝑤𝐼𝐽𝐷𝐼𝑡(𝑡), (23)

nd the expressions for the dimensionless delays and currents are

𝐾 = 𝐿
𝜈𝐾 (1 − 𝜌𝐾,bulk)

, 𝜏𝐷 = 𝐿
𝜈𝐷(1 − 𝜌𝐷,bulk)

(24)

𝐽𝐾 = 𝜈𝐾𝜌𝐾,bulk(1 − 𝜌𝐾,bulk), 𝐽𝐷 = 𝜈𝐷𝜌𝐷,bulk(1 − 𝜌𝐷,bulk). (25)

For simplicity, we use the same notation for the dimensionless equa-
tions as for the previous dimensional equations. For the remainder of
the study we use the dimensionless variables and equations. Parameter
values are given in Table 1 unless used as a bifurcation parameter.

From Eqs. (16) and (17), the axon length 𝐿 affects the time delays
inearly. The diagrams in Fig. 6 show how changes in 𝐿 influence os-
illations in 𝐼𝑏 (and thereby 𝐸𝑏). At a small value of 𝐿, the equilibrium

solution (black) loses stability (Fig. 6A), and gives rise to a branch of
periodic solutions (red). These solutions are depicted with two curves,
one for the oscillation minimum and one for the maximum. After the
emergence of the periodic branch at a supercritical Hopf bifurcation
(green filled circle) the oscillation amplitude (distance between the red
curves) grows quickly and after 𝐿 = 1 changes very little. In contrast,
the oscillation period, shown in Fig. 6B, grows almost linearly over
the entire range of 𝐿 values shown. Thus, oscillation period, but not
amplitude, is capable of encoding axonal length.
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Table 1
Dimensionless parameter descriptions and values. Values of 𝑝𝐸 , 𝑝𝐼 , 𝑤𝐸 , 𝑤𝐼 , 𝑑𝐸,𝑏, 𝑑𝐸,𝑡, 𝑑𝐼,𝑏 and 𝑑𝐼,𝑡 are adopted from the previous model [18].
For simplicity, we assume that the hopping rates of kinesins and dyneins are the same (for a discussion on different hopping rates, please
see Section 7). By choosing the characteristic hopping rate (𝑣∗ in the Appendix) to be the rate for kinesins, we get 𝜈𝐾 = 𝜈𝐷 = 1. We choose
𝜌𝐾,bulk = 𝜌𝐷,bulk = 0.5 in order to get maximum currents (see Eq. (25)). The value of 𝐿 is set to be 10, such that the signals oscillate like square
waves.
Parameter Definition Value

𝑝𝐸 Basal production rate of signal E molecules at the cell body 6
𝑝𝐼 Basal production rate of signal I molecules at the cell body 6
𝑤𝐸 Average number of signal E molecules carried by a single kinesin 5
𝑤𝐼 Average number of signal I molecules carried by a single dynein 5
𝜈𝐾 Hopping rate of kinesins 1
𝜈𝐷 Hopping rate of dyneins 1
𝜌𝐾,bulk Bulk density of kinesins 0.5
𝜌𝐷,bulk Bulk density of dyneins 0.5
𝑑𝐸,𝑏 Degradation rate of signal E molecules at the cell body 1
𝑑𝐸,𝑡 Degradation rate of signal E molecules at the axon tip 1
𝑑𝐼,𝑏 Degradation rate of signal I molecules at the cell body 1
𝑑𝐼,𝑡 Degradation rate of signal I molecules at the axon tip 1
𝐿 Axon length 10
Fig. 6. The bifurcation diagram and period variation with respect to 𝐿. (A) The bifurcation diagram shows that an oscillatory solution emerges from a supercritical Hopf bifurcation
point (green circle) and the oscillation maximum and minimum (red curves) rapidly flatten out as 𝐿 increases. The stationary branch is generated numerically using the BIFTOOL
software package [32], and the periodic branch is generated through numerical integration of the equations over a range of 𝐿 values. (B) The period 𝑇 increases almost linearly
with 𝐿.
4. Experimental manipulations support an inhibitory role for os-
cillations

If our assumption that axon growth is determined by the oscillation
period of the signaling molecules E and I is correct, then since the
period increases with axon length in our model, it must be true that
axon growth is inhibited at larger periods. Otherwise, the axon would
grow without bound. Also, we assume that the axon grows when the
signal is at a low level equilibrium, because there is no inhibitory
influence to act against the growth. In this section, we explore two
experimental manipulations that have been performed which, together
with bifurcation analysis, support these features of the model.

In one manipulation, Perry et al. used the anti-nucloelin aptamer
AS1411 to disrupt the binding between kinesins and nucleolins and
found that it led to axon growth [20]. The nucleolins carry importin-
𝛽1 RNA, which was assumed to be the excitatory signaling molecule
E. Thus, application of AS1411 would result in a reduction in 𝑤𝐸 ,
since this parameter reflects the binding affinity between signal E and
kinesins. To investigate the effect of application of AS1411 in the
model, we performed a bifurcation analysis of the E-I system with
respect to 𝑤𝐸 (Fig. 7). For a large range of values of 𝑤𝐸 there is little
change in either the amplitude or period of oscillations. However, for
values of 𝑤𝐸 below the Hopf bifurcation, the oscillations are replaced
by a branch of stable stationary solutions. Since the signaling system
is not oscillating here, there is no inhibition of axon growth, so for
𝑤𝐸 values below the Hopf bifurcation the axon would grow. Thus,
we interpret the experimental manipulation as reducing 𝑤𝐸 from a
value in which oscillations occur and provide an inhibitory influence
to further axon growth, to a value in which there are no oscillations to
5

inhibit axon growth, so the axon increases in length, as observed in the
experiments.

In another manipulation, Rishal et al. reduced the motor densities
by knocking down the related motor heavy chains, and in response
observed axon growth [13]. To check consistency with our model, we
performed bifurcation analysis with respect to the average bulk densi-
ties 𝜌𝐾,bulk and 𝜌𝐷,bulk. In both cases, oscillations occur at intermediate
levels of the densities, and these are deliminated by Hopf bifurcations.
Also, in both cases, the oscillation period increases monotonically with
the bulk density (Fig. 8B, D). Thus, a manipulation that reduces the
bulk density of either type of motor would reduce the oscillation period.
This reduction would promote axon growth, as seen in the experiments.

Considering both experiments and the corresponding bifurcation
analysis, we conclude that the overall effect of the oscillation on axon
growth is inhibitory, and the inhibition is stronger at greater periods. In
the next section, we implement this by combining the delayed feedback
model with a generic signaling pathway for axon growth.

5. How does a neuron regulate the length of its axon according to
the signal frequency?

Most materials for axon growth are produced in the cell body and
transported into an axon [33,34], although there are also organelles
within the axon that enable local production [15,35]. To regulate ax-
onal growth according to the oscillatory signals, there must be signaling
pathways that link the signals to some effector proteins which control
the production of the materials in the cell body. In this section, we
analyze the following minimal signaling pathway

𝐼 ⟞ 𝑌 ⟶ 𝑋, (26)
𝑏
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Fig. 7. Analysis of signaling molecule oscillations with changes in the binding affinity between E and kinesins (𝑤𝐸 ). (A) The one-parameter bifurcation diagram shows that the
scillation starts at a Hopf bifurcation point of 𝑤𝐸 (green circle) and the peak value rapidly flattens out. (B) There is little change in period with 𝑤𝐸 .
Fig. 8. Analysis of signaling molecule oscillations with changes in the bulk densities (𝜌𝐾,bulk and 𝜌𝐷,bulk). (A, C) The bifurcation diagrams show that oscillations are initiated and
erminated by supercritical Hopf bifurcations. (B, D) The period increases with increases in the bulk densities.
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hich provides a phenomenological description of a mechanism that
ould be used by a neuron to regulate its axon length. The concentra-
ion of the inhibitory signal I at the cell body, 𝐼𝑏, is chosen to be the
nput in this pathway, which inhibits an intermediate signaling protein
. 𝑌 subsequently activates an effector protein 𝑋, which is assumed to
ositively regulate the production of materials for axon growth in the
ell body. The intermediate node 𝑌 is necessary, otherwise the average
evel of 𝑋 cannot encode the frequency of 𝐼𝑏 [19].

For simplicity, we assume that the average level of 𝑋 determines
he axon length,

= 𝛼𝑋⟨𝑋⟩, (27)

here ⟨𝑋⟩ is the time average of 𝑋. If 𝑋 is at equilibrium, ⟨𝑋⟩ is
qual to 𝑋. If 𝑋 is oscillating, ⟨𝑋⟩ is the average of 𝑋 over a period.
he biological assumption underlying Eq. (27) is that 𝑋 positively
egulates the length 𝐿. Eq. (27) is the simplest way to capture this
athematically. More complicated models may include a differential

quation for 𝐿 [36,37], where the extension rate or retraction rate
6

epends on 𝑋. However, the result is still the existence of a (nonlinear)
ositive correlation between 𝐿 and 𝑋. Choosing any such nonlinear
tructure does not change our conclusions; we elected to proceed with
q. (27) for analytic tractability of our model. Eq. (27) together with
qs. (8) and (24) gives

= 𝛼𝑇 ⟨𝑋⟩, (28)

here

𝑇 = 𝛼𝑋

(

2
𝜈𝐾 (1 − 𝜌𝐾,bulk)

+ 2
𝜈𝐷(1 − 𝜌𝐷,bulk)

)

. (29)

From Eqs. (27)–(29), we can see that the period is determined by the
length through the following relation:

𝑇 = 𝐿
(

2
𝜈𝐾 (1 − 𝜌𝐾,bulk)

+ 2
𝜈𝐷(1 − 𝜌𝐷,bulk)

)

. (30)

𝑇 also influences the time evolution of 𝐿. This mutual feedback leads
to an equilibrium length which we derive in the following.
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Fig. 9. Time evolution of 𝐼𝑏, 𝑌 and 𝑋 in the closed-loop model. The MATLAB solver
‘ddesd’’ is used to solve Eqs. (31) and (32) together with Eqs. (1)–(4) simultaneously.
he delays at each time step are set according to 𝜏𝐾 = 𝛼𝑋𝑋∕(𝜈𝐾 (1 − 𝜌𝐾,bulk)) and
𝐷 = 𝛼𝑋𝑋∕(𝜈𝐷(1 − 𝜌𝐷,bulk)) and taking advantage of the much slower change in 𝑋 than
𝑏 and 𝑌 so that it approximately constant over an oscillation period. The black curve
hows that as the mean value of 𝑋 equilibrates, so does the axon length. Parameter
alues are listed in Tables 1 and 2. All quantities, including 𝑋, 𝑌 and the four signal
oncentrations, are initially set to zero.

With the signaling pathway (Eq. (26)), we have the following
quations for the time evolution of activated 𝑌 and 𝑋

d𝑌
d𝑡

= 𝑝𝑌 (1 − 𝜃
(

𝐼𝑏 −𝐾𝑌
)

) − 𝑑𝑌 𝑌 , (31)

d𝑋
d𝑡

= 𝑝𝑋 − (𝑑𝑋 − 𝑑𝑋,𝑌 𝜃
(

𝑌 −𝐾𝑋
)

)𝑋, (32)

where 𝜃 is the Heaviside function, given by

𝜃(𝑥) =

{

0, 𝑥 < 0
1, 𝑥 ≥ 0.

(33)

The first term in Eq. (31) describes activation of 𝑌 that can be inhibited
by 𝐼𝑏 if 𝐼𝑏 is above a threshold 𝐾𝑌 (similar to the inhibition of 𝐸𝑏
production by 𝐼𝑏), while the second term describes linear deactivation
of 𝑌 . 𝑝𝑌 and 𝑑𝑌 are activation and deactivation rate constants. The
second term in Eq. (32) ensures that 𝑌 promotes 𝑋 by repressing its
deactivation when 𝑌 is above another threshold 𝐾𝑋 . (𝑑𝑋,𝑌 < 𝑑𝑋 for
the system to remain bounded.) The first term in this equation, 𝑝𝑋 , is
the activation rate of 𝑋, which is not affected by 𝑌 .

At this point, the model forms a closed-loop system, where axon
growth is determined by the period of oscillation of 𝐼𝑏 and, in turn, the
period of the oscillation depends on the axon length. A simulation of
the full model is shown in Fig. 9. Initially, the oscillations in 𝐼𝑏 (grey
urve) are fast and of small amplitude, so that 𝑌 (blue) is large. This
llows for rapid growth in ⟨𝑋⟩ (black curve shows 𝑋, with evident rise

in mean value). As ⟨𝑋⟩, and thus axon length, continues to grow, the
oscillation period in 𝐼𝑏 increases, resulting in a decline in the mean
value of 𝑌 . Consequently, ⟨𝑋⟩ levels off to an asymptotic value. At this
point, there are still small oscillations in 𝑋 (upper inset), but its mean
has equilibrated. Thus, oscillations and axon growth interact to achieve
an equilibrium length.

The key element of equilibrated axon length with the close-loop
model is increased inhibition of growth with greater oscillation period
of 𝐼𝑏. We next show that this is true in general. We first aim at obtaining
⟨𝑋⟩∞, the value of ⟨𝑋⟩ when the means and oscillation amplitudes
of 𝐼𝑏, 𝑌 and 𝑋 are at asymptotic levels (i.e., after transients have
died out). The lower inset in Fig. 9 indicates that we can ignore the
rapid transition of 𝐼𝑏 from one level to the other so that it can be
approximated by a square wave. We show this approximating square
wave together with time evolutions of 𝑌 and 𝑋 in Fig. 10. Note that 𝐼𝑏

spends the same amount of time at its maximum and minimum values [

7

Table 2
Parameter values for the signaling pathway (Eq. (26)).

Parameter Definition Value

𝑝𝑌 Basal activation rate of 𝑌 0.0585
𝑑𝑌 Basal deactivation rate of 𝑌 0.0195
𝐾𝑌 Threshold for 𝐼𝑏 to suppress activation of 𝑌 2.25
𝑝𝑋 Basal activation rate of 𝑋 0.0019
𝑑𝑋 Basal deactivation rate of 𝑋 0.0019
𝑑𝑋,𝑌 Reduction in the deactivation rate of 𝑋 due to 𝑌 0.0018
𝐾𝑋 Threshold for 𝑌 to suppress the deactivation 𝑋 1
𝛼𝑋 Scale factor linking ⟨𝑋⟩ to 𝐿 1.5

within a period, which is approximately 𝜏𝐾 + 𝜏𝐷 ≡ 𝐷. During the cycle
in Fig. 10A, which starts at 𝑡0, 𝑌 evolves as:

d𝑌
d𝑡

=

{

−𝑑𝑌 𝑌 𝑡0 ≤ 𝑡 ≤ 𝑡0 +𝐷,
𝑝𝑌 − 𝑑𝑌 𝑌 𝑡0 +𝐷 ≤ 𝑡 ≤ 𝑡0 + 2𝐷.

(34)

𝑌 starts each cycle from a maximum value 𝑌max, arrives at 𝑌min halfway
through, and returns to 𝑌max at the end. By solving Eq. (34), we obtain

𝑌 =

{

𝑌max𝑒−𝑑𝑌 (𝑡−𝑡0) 𝑡0 ≤ 𝑡 ≤ 𝑡0 +𝐷,
𝑌𝑠 − (𝑌𝑠 − 𝑌min)𝑒−𝑑𝑌 (𝑡−𝑡0−𝐷) 𝑡0 +𝐷 ≤ 𝑡 ≤ 𝑡0 + 2𝐷,

(35)

where 𝑌𝑠(= 𝑝𝑌 ∕𝑑𝑌 ) is the equilibrium value of 𝑌 in the absence of
inhibition by 𝐼𝑏. Imposing continuity at the midpoint of the cycle gives

𝑌min = 𝑌𝑠
1

𝑒𝑑𝑌 𝐷 + 1
, (36)

𝑌max = 𝑌𝑠
𝑒𝑑𝑌 𝐷

𝑒𝑑𝑌 𝐷 + 1
. (37)

et 𝐷𝑌 be the amount of time per oscillation that 𝑌 is above 𝐾𝑋 , and
𝑌 be the ratio of this duration to the period (i.e., 𝑟𝑌 = 𝐷𝑌 ∕𝑇 ). Also

define 𝐸𝑌 as the amount of time per oscillation when 𝐼𝑏 is below 𝐾𝑋 .
Thus, 𝐸𝑌 + 𝐷𝑌 = 𝑇 . Under the condition that 𝑌min < 𝐾𝑋 < 𝑌max, we
obtain 𝑟𝑌 as

𝑟𝑌 = 1
2
+

𝛽𝑌
𝑇

, (38)

where 𝛽𝑌 = ln((𝑌𝑠∕𝐾𝑋 ) − 1)∕𝑑𝑌 . We showed in (Section 4) that the
inhibition due to oscillation becomes stronger as the period 𝑇 increases.
To correctly describe this, we require that 𝛽𝑌 > 0, which implies

𝑋 < 𝑌𝑠∕2. Thus, as an axon grows, 𝑇 becomes larger and 𝑟𝑌 gets
maller, which means that the growth is less sustained throughout a
ycle.

Now we consider ⟨𝑋⟩. Note that 𝑋 evolves as a piecewise linear
unction, indicated by the upper inset in Fig. 9 and also schematically
hown in Fig. 10B. This reflects the fact that 𝑋 is a slow variable on
he time scale of an oscillation period and is related to the production
f materials in the cell body. After transient changes in the mean and
mplitude of 𝑋, the oscillation of 𝑋 becomes stable and there is no
et change in 𝑋 during each cycle, as shown in Fig. 10B. Therefore,
ntegrating Eq. (32) from some time 𝑡0 over one period 𝑇 gives us

= ∫

𝑡0+𝑇

𝑡0

d𝑋
d𝑡

d𝑡 = ∫

𝑡0+𝑇

𝑡0
[𝑝𝑋 − (𝑑𝑋 − 𝑑𝑋,𝑌 𝜃

(

𝑌 −𝐾𝑋
)

)𝑋]d𝑡. (39)

According to the definitions of 𝐷𝑌 and 𝐸𝑌 , Eq. (39) becomes

𝑝𝑋𝐷𝑌 − (𝑑𝑋 − 𝑑𝑋,𝑌 )∫

𝑡0+𝐷𝑌

𝑡0
𝑋d𝑡 + 𝑝𝑋𝐸𝑌 − 𝑑𝑋 ∫

𝑡0+𝑇

𝑡0+𝐷𝑌

𝑋d𝑡 = 0. (40)

ince X evolves linearly during 𝐷𝑌 and 𝐸𝑌 , we have
𝑡0+𝐷𝑌

𝑡0
𝑋d𝑡 = 𝐷𝑌 ⟨𝑋⟩∞, ∫

𝑡0+𝑇

𝑡0+𝐷𝑌

𝑋d𝑡 = 𝐸𝑌 ⟨𝑋⟩∞, (41)

here ⟨𝑋⟩∞ denotes the equilibrium level of ⟨𝑋⟩, achieved at suffi-
iently large 𝑡. Then Eq. (40) becomes
𝑝𝑋 − (𝑑𝑋 − 𝑑𝑋,𝑌 )⟨𝑋⟩∞]𝐷𝑌 + (𝑝𝑋 − 𝑑𝑋⟨𝑋⟩∞)𝐸𝑌 = 0, (42)
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Fig. 10. The evolution of 𝐼𝑏, 𝑌 and 𝑋 in the long run. (a) 𝑌 declines from 𝑌max to 𝑌min when 𝐼𝑏 is in its upper level and returns to 𝑌max again when 𝐼𝑏 is in its lower level.
𝐷𝑌 and 𝐸𝑌 are the durations when 𝑌 is above and below 𝐾𝑋 , respectively. 𝐷 is the duration when 𝐼𝑏 stays in either of its two levels and the period 𝑇 is 2𝐷. (b) Evolving on a
larger time scale, 𝑋 increases and decreases linearly during 𝐷𝑌 and 𝐸𝑌 , respectively.
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which yields

⟨𝑋⟩∞ =
𝑝𝑋

𝑑𝑋 − 𝑑𝑋,𝑌 𝑟𝑌
. (43)

We next compare our results to the experiments in [13], where the
scillation period of 𝐼𝑏 was changed by partially removing motors from
xons. The following closed system determines the oscillation period 𝑇
nd the equilibrium axon length 𝐿∞:

⎧

⎪

⎪

⎨

⎪

⎪

⎩

⟨𝑋⟩∞ = 𝑝𝑋
𝑑𝑋−𝑑𝑋,𝑌 𝑟𝑌

,

𝑟𝑌 = 1
2 + 𝛽𝑌

𝑇 ,
𝑇 = 𝛼𝑇 ⟨𝑋⟩∞,
𝐿∞ = 𝛼𝑋⟨𝑋⟩∞.

(44)

We define the rescaled equilibrium length 𝑙∞ by

𝑙∞ ∶=
𝐿∞
𝐿0

=
𝛼𝑋⟨𝑋⟩∞
𝛼𝑋⟨𝑋⟩0

=
⟨𝑋⟩∞
𝑋0

, (45)

here 𝑋0 is the equilibrium value of 𝑋 when there is no inhibition on
he growth, given by

0 =
𝑝𝑋

𝑑𝑋 − 𝑑𝑋,𝑌
. (46)

olving Eq. (44) then gives

∞ =
𝑐𝑟𝑑 + 2(1 − 𝑟𝑑 )

2 − 𝑟𝑑
, (47)

where

𝑟𝑑 ≡
𝑑𝑋,𝑌

𝑑𝑋
, 𝑐 ≡

2𝛽𝑌
𝛼𝑇𝑋0

. (48)

Note that 𝑐 is a function of 𝛼𝑇 and 𝛼𝑇 is a function of 𝜌𝐾,bulk and
𝜌𝐷,bulk (Eq. (29)). Thus Eq. (47) relates 𝑙∞ to the bulk densities of
motors. To reproduce the experimental data in [13], we consider the
limiting case where 𝑙∞ = 𝑐 (i.e. 𝑟𝑑 → 1). For simplicity, we also
assume 𝜈𝐾 = 𝜈𝐷. In [13], either or both of 𝜌𝐾,bulk and 𝜌𝐷,bulk were
reduced by 40%. Starting with 𝜌𝐾,bulk = 𝜌𝐷,bulk = 0.5, we obtain a 17%
increase in 𝑙∞ when either 𝜌𝐾,bulk or 𝜌𝐷,bulk is reduced to 0.3, and a
40% increase if both are reduced to 0.3. These predictions match the
data in [13], which demonstrates that the signaling pathway proposed
in the beginning of this section captures experimental observations.

Thus far, we have focused on the equilibrium length when 𝑌 oscil-
lates about 𝐾𝑋 . If 𝑌 is always above 𝐾𝑋 the growth is never inhibited
and 𝑙∞ = 1. Conversely, if 𝑌 stays below 𝐾𝑋 , the growth is inhibited
throughout a cycle and 𝑙∞ = 1 − 𝑟𝑑 . In summary, we have

𝑙∞ =

⎧

⎪

⎨

⎪

⎩

1 if 𝑌 (𝑡) > 𝐾𝑋 for all 𝑡,
𝑐𝑟𝑑+2(1−𝑟𝑑 )

2−𝑟𝑑
if 𝑌 (𝑡) oscillates and 𝑌min < 𝐾𝑋 < 𝑌max,

1 − 𝑟𝑑 if 𝑌 (𝑡) < 𝐾𝑋 for all 𝑡,
(49)

hich describes three equilibrium states: (1) an uninhibited state, (2) a
artially inhibited state and (3) and a fully inhibited state. The growth
8

bserved experimentally in [20] when the binding affinity between
inesin motors and signal E molecules was reduced corresponds, in
ur model, to a switch from the second state to the first . The growth
bserved experimentally in [13] when the motor densities were re-
uced corresponds, in our model, to an increase in 𝑙∞ due to a change

in 𝑐. During normal development, an axon would grow freely in the
beginning and reach an equilibrium length due to partial inhibition by
the oscillation, which is a transition from the first state to the second.
The third state cannot be reached in this case and it may correspond to
abnormal physiological conditions. In the next section, we will see that
changes in some parameters of the delayed feedback model can drive
𝑙∞ to the third case.

6. The model predicts steps in axon length

In this section we use numerical continuation of the full closed-loop
model to analyze the dependence of the equilibrium axon length on
model parameters. To increase the biological fidelity of our model, we
replace the Heaviside functions used in production and degradation
terms for mathematical convenience previously with Hill functions.
Thus, the dynamics of 𝑋 and 𝑌 are now described by
d𝑌
d𝑡

= 𝑝𝑌 (1 −𝐻
(

𝐼𝑏, 𝐾𝑌 , 𝑛𝑌
)

) − 𝑑𝑌 𝑌 , (50)

d𝑋
d𝑡

= 𝑝𝑋 − (𝑑𝑋 − 𝑑𝑋,𝑌𝐻
(

𝑌 ,𝐾𝑋 , 𝑛𝑋
)

)𝑋. (51)

where 𝐻 (⋅, ⋅, ⋅) is defined in Eq. (6) with 𝑛𝑋 = 𝑛𝑌 = 5.
We begin by examining the effects of varying 𝑤𝐸 , the parameter

describing the average number of E molecules carried by a single
kinesin motor. For small values of the parameter the equilibrium length
is large. As 𝑤𝐸 is increased, 𝑙∞ changes little until there is a sharp
drop to a lower value (Fig. 11A). This lower value is maintained for the
remainder of the range of 𝑤𝐸 values examined. Thus, there is a single
step down in the equilibrium length as 𝑤𝐸 is increased. The reason
for this step-like behavior is apparent from the 𝐼𝑏 bifurcation diagram
(Fig. 11B). Once 𝑤𝐸 reaches a value large enough that the peak of the
oscillation in 𝐼𝑏 exceeds the threshold value 𝐾𝑌 , the signaling molecule
𝑌 will be subject to inhibition by 𝐼𝑏 (Fig. 11B). Thus, the curves in
Fig. 11 reflect a switch from a free-growth state to an inhibited state.
Similar behaviors occur when 𝑤𝐼 or 𝑝𝐼 are varied.

We next examine the effects of varying the degradation parameter
𝑑𝐸,𝑏. For small values of this parameter the equilibrium length is small.
As in the previous case, there is a step-like behavior as 𝑑𝐸,𝑏 is increased,
but this time there is an upward step (Fig. 12A). This upward step
occurs when the peak value of 𝐼𝑏 during an oscillation falls below
𝐾𝑌 , which removes inhibition of 𝑌 . This results in an increase in the
equilibrium ⟨𝑋⟩ and thus an increase in the equilibrium axon length.
The equilibrium axon length exhibits similar upward step behaviors

when 𝑑𝐼,𝑏 or 𝑑𝐼,𝑡 are increased.
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Fig. 11. The variation of equilibrium axon length with variation in 𝑤𝐸 , the number of E molecules carried by a single kinesin motor. (A) The equilibrium length exhibits a step
down as 𝑤𝐸 is increased. (B) The bifurcation diagram has a single Hopf bifurcation. The threshold for inhibition of 𝑌 is superimposed as a dashed line.
Fig. 12. The variation of equilibrium axon length with variation in the degradation parameter 𝑑𝐸,𝑏. (A) The equilibrium length exhibits a step up as 𝑑𝐸,𝑏 is increased. (B) The
ifurcation diagram in 𝐼𝑏 has a single Hopf bifurcation. The threshold for inhibition of 𝑌 is superimposed as a dashed line.
Fig. 13. The variation of equilibrium axon length with variation in the E production parameter 𝑝𝐸 . (A) The equilibrium length exhibits two steps down as 𝑝𝐸 is increased. (B)
The bifurcation diagram in 𝐼𝑏 has two Hopf bifurcations. The threshold for inhibition of 𝑌 is superimposed as a dashed line.
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Unlike the cases above, there is a two-step decrease in 𝑙∞ as 𝑝𝐸 , the
basal production rate of E at the body, is increased (Fig. 13A). The first
step down occurs for 𝑝𝐸 values just past the initiation of oscillations
n 𝐼𝑏. That is, just beyond the left Hopf bifurcation point in the 𝐼𝑏
ifurcation diagram (Fig. 13B). The rapid increase in the amplitude of
he oscillation that occurs after the bifurcation results in the peak 𝐼𝑏
alues moving past 𝐾𝑌 , inhibiting 𝑌 and reducing the equilibrium axon

length. At larger values of 𝑝𝐸 a second Hopf bifurcation occurs. As this
ifurcation is approached, the peak 𝐼𝑏 value is almost unchanged, but
he minimum value during the oscillation increases, so that at some
oint 𝐼𝑏 > 𝐾𝑌 throughout the entire oscillation cycle. This case of
aximum inhibition of 𝑌 by 𝐼𝑏 results in a second downward step in

he equilibrium axon length and corresponds to the third case in Eq.
 i

9

(49). Biologically, over-production of the signal E molecules leads to
a high level of I and prevents the system from oscillating. There is a
similar two-step change in 𝑙∞ when 𝑑𝐸,𝑡 is increased, except that 𝑙∞
ncreases twice instead of falling twice.

All cases discussed thus far exhibit monotonic increases or decreases
f 𝑙∞ when the bifurcation parameter is increased. If we look instead
t the effects of changes in the bulk densities of motors the situation is
ifferent. Fig. 14A shows that 𝑙∞ is initially unaffected by an increase
n 𝜌𝐾,bulk, but then steps down to a lower value. However, once 𝜌𝐾,bulk
s sufficiently large, there is a step back to the original equilibrium
xon length. This result can be explained by an analysis of the 𝐼𝑏
ifurcation diagram (Fig. 14B), which has two Hopf bifurcations that
nitiate and terminate the oscillations. For a range of values of 𝜌
𝐾,bulk
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Fig. 14. The variation of equilibrium axon length with variation in the kinesin bulk density constant 𝜌𝐾,bulk. (A) The equilibrium length exhibits a non-monotonic behavior as the
ulk density is increased. (B) The bifurcation diagram has two Hopf bifurcations. The threshold for inhibition of 𝑌 is superimposed as a dashed line.
etween, the peak 𝐼𝑏 value of the oscillations is above 𝐾𝑌 so 𝑌 is
nhibited. Outside of this range 𝑌 is not inhibited, so 𝑙∞ takes on its
aximum value. Biologically, as 𝜌𝐾,bulk increases, the kinesin motors

et crowded within an axon. This prevents them from transporting the
ignal E effectively, which in turn leads to cessation of the oscillation
nd removal of inhibition from the axon growth mechanism. Similar
ehavior occurs if 𝜌𝐷,bulk is varied.

. Discussion

In this article, we developed a multi-scale model of a mechanism
or axon length regulation proposed by Rishal et al. [13]. Our model
xtends earlier models [18,19] by using a TASEP approach to charac-
erize motor dynamics. This enabled us to form a direct link between
olecular motor dynamics, signaling delays, and axon length. We fur-

her derived a closed system by introducing a gene signaling pathway
hat maps the oscillation period to the strength of inhibition for axon
rowth. This closed-loop model captures the results of two experimen-
al manipulations [13,20] and yields expressions for equilibrium axon
ength that has three distinct equilibrium states: (1) a free-growth state,
2) a partially-inhibited state, and (3) a fully inhibited state. Changes
n system parameters induce transitions from one state to another. That
s, our model links microscopic changes in motor density in an axon to
he macroscopic property of axonal length.

One important prediction of our model is that increasing motor
ensity to a sufficiently high value results in axonal growth (Fig. 14).
his result manifests from the assumption that the signal oscillation
rives inhibition. As far as we know, experimental studies have not
nvestigated such behavior. Such investigation could validate our model
nd provide circumstantial evidence for inhibition being driven by
ignal oscillations.

Throughout the paper, we assume that the hopping rates of kinesin
nd dynein motors are the same. However, data indicate that they can
e different [38]. In the current delayed feedback model (Eqs. (1)–(4)),
he currents (𝐽𝐾 and 𝐽𝐷) and the delays (𝜏𝐾 and 𝜏𝐷) depend on the
opping rates. If 𝜈𝐾 > 𝜈𝐷, 𝐽𝐾 and 𝜏𝐾 will be more sensitive to a change
n 𝜌𝐾,bulk than 𝐽𝐷 and 𝜏𝐷 to the same change in 𝜌𝐷,bulk. But this does
ot qualitatively alter our model results.

To see this point more clearly, consider the equilibrium length 𝑙∞,
hich is given by Eq. (49). For simplicity, let 𝑟𝑑 → 1, so that 𝑙∞ = 𝑐.
y the definitions of 𝑐 (Eq. (48)) and 𝛼𝑇 (Eq. (29)), we get

∞ ∼ 1
1

𝜈𝐾 (1−𝜌𝐾,bulk)
+ 1

𝜈𝐷(1−𝜌𝐷,bulk)

. (52)

From this relation, we can see that 𝑙∞ changes faster with 𝜌𝐾,bulk if 𝜈𝐾
s larger. However, 𝑙∞ still decreases with 𝜌𝐾,bulk or 𝜌𝐷,bulk and this
esult matches the experimental observation in [13]. Additionally, 𝐽𝐾
ppears in a product with 𝑤𝐸 in the delayed feedback model (Eqs. (1)–

(4)) and they thus play the same role mathematically. Our bifurcation
10
analysis of 𝑤𝐸 shows that it only affects the oscillation amplitude, not
the frequency (Fig. 7). Therefore, an increase in 𝐽𝐾 due to larger 𝜈𝐾
will not affect the oscillation frequency. Furthermore, the bifurcation
diagram with respect to 𝜌𝐾,bulk will not change qualitatively for a larger
𝜈𝐾 , although the Hopf bifurcation points may change their locations.
Thus, our prediction regarding equilibrium length (Fig. 14) remains the
same. The above discussion also applies to 𝜈𝐷.

To model the transportation of motors, we used two uncoupled
TASEPs in opposite directions. In reality, kinesin and dynein motors
share the same tracks and their steric interactions reduce the currents
of both motors and prolong the delays to traverse the axon. Indeed, a
recent study shows that co-existence of two types of motors hinder their
motions [38]. However, the current-density and delay-density relations
remain qualitatively the same in this case. That is, for small densities,
the current increases as a function of density until a critical value
is reached, beyond which the current decreases with motor density
to zero. Moreover, delay times to traverse the axon increases with
increasing motor density. Thus, the conclusions in this paper do not
change.

Another complexity our model fails to explicitly capture is that
some cargoes are attached to both motors simultaneously and their
motion is bidirectional [39,40]. It is possible that our hypothesized
chemical signals’ dynamics undergo bidirectional motion. In spite of
this, we expect the average excitatory signal current to be in the
anterograde direction and the average inhibitory signal current to be
in the retrograde direction. Thus, we expect the qualitative behavior of
our model in this case to be similar to the model we analyzed in this
paper, albeit perhaps with smaller motor currents and longer delays.

There are a number of issues we hope to explore in future work.
First, we hope to capture finer details of motor transport with a mathe-
matical model. For example, motors detach from microtubules, diffuse
in cytosol, and re-attach to the microtubules during cargo transport. To
model these phenomena, a two-lane lattice system can be used where
one lane describes the active motor movement along microtubules
and the other lane describes their passive diffusion [27,41–44]. The
attachment and detachment can be modeled as a switch between the
two lanes. More generally, we can frame transitions in the states
of molecular motors and the corresponding dynamics as a piecewise
deterministic Markov process [24,45–47], wherein a Markov process
governs transitions between microscopic states and the dynamics in
each state are deterministic. Indeed, motor-driven cargo exhibits bal-
listic anterograde or retrograde motion interspersed with periods of
long pauses [26]. Incorporating such details will allow us to better
characterize the effect of noise at the motor level on the full system.

Second, we hope to incorporate intrinsic noise in gene activation
states into the model. Our signaling pathway implicitly assumes a large
copy number for the number of gene states and therefore allows us
to use kinetic equations to describe protein dynamics in response to
the oscillating retrograde signal. If copy numbers are low, a master
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equation needs to be constructed to describe the dynamics and can
be useful to quantitate intrinsic noise. Though this has been done
previously [19,48], our formulation is more general in that we make
no attempt to specify cellular processes affected by oscillatory signals.

Finally, we note that an alternative axonal length-sensing mech-
anism has been proposed [49]. There, Roossien et al. tracked the
movement of docked mitochondria in order to establish that the phys-
ical mechanism of growth cone advance in Drosophila is similar to
vertebrate neurons. That is, the bulk forward translocation of micro-
tubules along the axon underlies the advance of the growth cone
C-domain. They also compared the length of axons grown on two
different substrates, either poly-ornithine or Drosophila ExtraCellular
Matrix (DECM). They found that axons grown on the faster substrate
DECM ended up being longer than the other substrate. The authors
suggested that if a length sensor were the sole regulator of the cessation
of elongation, then neurons grown on poly-ornithine would be expected
to sustain elongation for a longer time than neurons grown on DECM
so that they end up having similar lengths. Since this was not observed,
it suggests that there may be some internal clock that is independent of
axonal length and terminates elongation after a set period of growth.

CRediT authorship contribution statement

Fan Bai: Developed the analysis, Ran all numerical simulations,
Wrote and edited the paper. Richard Bertram: Designed the research,

eveloped the analysis, Wrote and edited the paper. Bhargav R.
aramched: Designed the research, Developed the analysis, Wrote and
dited the paper.

eclaration of competing interest

The authors declare that they have no known competing finan-
ial interests or personal relationships that could have appeared to
nfluence the work reported in this paper.

cknowledgments

We thank Frederic Folz, Isabella Graf, and Cécile Appert-Rolland
or helpful discussions. RB was partially supported by National Science
oundation grant DMS 1853342.

ppendix A. Derivation of Eq. (14)

Here we show how to obtain the relation

𝑖 =
1

𝜈𝐾 (1 − 𝜌𝐾,𝑖)
(A.1)

from

𝑟𝑖 =
∞
∑

𝑛=1
𝑛d𝑡(1 − 𝜌𝐾,𝑖)𝜈𝐾d𝑡(1 − (1 − 𝜌𝐾,𝑖)𝜈𝐾d𝑡)𝑛−1. (A.2)

Let 𝐴 = (1 − 𝜌𝐾,𝑖)𝜈𝐾d𝑡, then we have

𝑟𝑖 = 𝐴d𝑡
∞
∑

𝑛=1
𝑛(1 − 𝐴)𝑛−1 = 𝐴d𝑡𝑆, (A.3)

where

𝑆 =
∞
∑

𝑛=1
𝑛(1 − 𝐴)𝑛−1 = 1 ⋅ (1 − 𝐴)0 + 2 ⋅ (1 − 𝐴)1 +⋯ . (A.4)

Multiplying both sides of this equation by 1 − 𝐴 gives

(1 − 𝐴)𝑆 = 1 ⋅ (1 − 𝐴)1 + 2 ⋅ (1 − 𝐴)2 +⋯ . (A.5)

Subtracting Eq. (A.5) from Eq. (A.4) gives

𝐴𝑆 = (1 − 𝐴)0 + (1 − 𝐴)1 +⋯ = 1 . (A.6)

𝐴
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Therefore we have

𝑆 = 1
𝐴2

(A.7)

nd

𝑖 = 𝐴d𝑡 ⋅ 1
𝐴2

= d𝑡
𝐴

= 1
𝜈𝐾 (1 − 𝜌𝐾,𝑖)

. (A.8)

ppendix B. Nondimensionalization of the delayed feedback
odel

Hew we show how Eqs. (20)–(25) are derived by properly choosing
haracteristic scales for model parameters. We first select the following
escaled parameters

̃𝐾 =
𝜏𝐾
𝑡∗

, 𝑙 = 𝑙
𝑙∗
, 𝑎̃ = 𝑎

𝑙∗
, 𝜈̃𝐾 =

𝜈𝐾
𝜈∗

, (B.1)

where we use tildes for the dimensionless parameters and stars for their
characteristic scales. Thus, Eq. (16) becomes

̃𝐾 = 𝑙
𝑎̃𝜈̃𝐾 (1 − 𝜌𝐾,bulk)𝑡∗𝑣∗

. (B.2)

The characteristic time scale 𝑡∗ for motion along the microtubules will
e inversely proportional to the hopping rate, so we set 𝑡∗ = 1∕𝑣∗. Then,

̃𝐾 = 𝑙
𝑎̃𝜈̃𝐾 (1 − 𝜌𝐾,bulk)

. (B.3)

For dynein motors, we have a similar relation

̃𝐷 = 𝑙
𝑎̃𝜈̃𝐷(1 − 𝜌𝐷,bulk)

. (B.4)

To nondimensionalize the equations (Eqs. (1)–(4)), we use the rescaling

𝐸̃𝑏 =
𝐸𝑏
𝐸∗ , 𝐸̃𝑡 =

𝐸𝑡
𝐸∗𝑟𝑉

, 𝐼𝑏 =
𝑟𝑉 𝐼𝑏
𝐸∗ , 𝐼𝑡 =

𝐼𝑡
𝐸∗ , (B.5)

𝑝̃𝐸 = 𝑡∗

𝐸∗ 𝑝𝐸 , 𝑝̃𝐼 = 𝑡∗

𝐸∗ 𝑝𝐼 , 𝐾̃𝐸 =
𝐾𝐸
𝐸∗𝑟𝑉

, 𝐾̃𝐼 =
𝑟𝑉 𝐾𝐼
𝐸∗ , (B.6)

𝑑𝐸,𝑏 = 𝑡∗𝑑𝐸,𝑏, 𝑑𝐸,𝑡 = 𝑡∗𝑑𝐸,𝑡, 𝑑𝐼,𝑏 = 𝑡∗𝑑𝐼,𝑏, 𝑑𝐼,𝑡 = 𝑡∗𝑑𝐼,𝑡. (B.7)

hen we have
d𝐸̃𝑏
d𝑡

= 𝑝̃𝐸,𝑏 − 𝑑𝐸,𝑏𝐸̃𝑏(𝑡) −
𝑤𝐸
𝑎̃

𝐽𝐾 𝐸̃𝑏(𝑡), (B.8)

d𝐸̃𝑡
d𝑡

= −𝑑𝐸,𝑡𝐸̃𝑡(𝑡) +
𝑤𝐸
𝑎̃

𝐽𝐾 𝐸̃𝑏(𝑡 − 𝜏𝐾 ), (B.9)

d𝐼𝑏
d𝑡

= −𝑑𝐼,𝑏𝐼𝑏(𝑡) +
𝑤𝐼
𝑎̃

𝐽𝐷𝐼𝑡(𝑡 − 𝜏𝐷), (B.10)

d𝐼𝑡
d𝑡

= 𝑝̃𝐼,𝑡 − 𝑑𝐼,𝑡𝐼𝑡(𝑡) −
𝑤𝐸
𝑎̃

𝐽𝐷𝐼𝑡(𝑡), (B.11)

here

̃𝐸,𝑏 = 𝑝̃𝐸
𝐸̃𝑛𝐸
𝑏

𝐸̃𝑛𝐸
𝑏 + 𝐾̃𝑛𝐸

𝐸

, 𝑝̃𝐼,𝑡 = 𝑝̃𝐼
𝐼𝑛𝐼𝑡

𝐼𝑛𝐼𝑡 + 𝐾̃𝑛𝐼
𝐼

(B.12)

𝐽𝐾 = 𝑎̃𝜈̃𝐾𝜌𝐾,bulk(1 − 𝜌𝐾,bulk), 𝐽𝐷 = 𝑎̃𝜈̃𝐷𝜌𝐷,bulk(1 − 𝜌𝐷,bulk). (B.13)

For convenience, we still use 𝜈̃𝐾 and 𝜈̃𝐷 for 𝑎̃𝜈̃𝐾 and 𝑎̃𝜈̃𝐷, and 𝑤̃𝐸 and
̃ 𝐼 for 𝑤̃𝐸∕𝑎̃ and 𝑤̃𝐼∕𝑎̃. Only the dimensionless equations will be used

in the following, so we drop all the tildes to obtain
d𝐸𝑏(𝑡)
d𝑡

= 𝑝𝐸,𝑏(𝑡) − 𝑑𝐸,𝑏𝐸𝑏(𝑡) −𝑤𝐸𝐽𝐾𝐸𝑏(𝑡), (B.14)

d𝐸𝑡(𝑡)
d𝑡

= −𝑑𝐸,𝑡𝐸𝑡(𝑡) +𝑤𝐸𝐽𝐾𝐸𝑏(𝑡 − 𝜏𝐾 ), (B.15)

d𝐼𝑏(𝑡)
d𝑡

= −𝑑𝐼,𝑏𝐼𝑏(𝑡) +𝑤𝐼𝐽𝐷𝐼𝑡(𝑡 − 𝜏𝐷), (B.16)

d𝐼𝑡(𝑡)
d𝑡

= 𝑝𝐼,𝑡(𝑡) − 𝑑𝐼,𝑡𝐼𝑡(𝑡) −𝑤𝐼𝐽𝐷𝐼𝑡(𝑡), (B.17)

ith the relations for the dimensionless delays and currents

𝐾 = 𝑙
𝜈𝐾 (1 − 𝜌𝐾,bulk)

, 𝜏𝐷 = 𝑙
𝜈𝐷(1 − 𝜌𝐷,bulk)

(B.18)

𝐽 = 𝜈 𝜌 (1 − 𝜌 ), 𝐽 = 𝜈 𝜌 (1 − 𝜌 ). (B.19)
𝐾 𝐾 𝐾,bulk 𝐾,bulk 𝐷 𝐷 𝐷,bulk 𝐷,bulk
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