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Introduction. My interests lie in the interdisciplinary field of Biomathematics. Broadly speaking,
my current research focuses on stochastic processes, dynamical systems, nonequilibrium statistical
physics, and control theory, with particular applications to biomolecular feedback systems, spa-
tiotemporal ordering in biological systems, and social decision-making. I am specifically interested
in developing mathematical models of biological and decision-making processes and analyzing them
with mathematical techniques to unveil fundamental principles underlying them. Over the past five
years, I have worked extensively in three primary areas:

Biomolecular 
Feedback
Systems

Delays Stochasticity

Biological Insights

(1) Biomolecular Feedback Systems Biomolec-
ular feedback systems (BFS) are a hallmark of bi-
ological modeling, and specifically have been used
to describe gene network motifs and how they affect
macroscopic protein concentration dynamics. How-
ever, most existing models of BFS are comprised of
ODEs. While such models can be insightful, they do
not grasp key details that could affect protein out-
put. My research into BFS involves investiga-
tion of the roles temporal delay and stochas-
ticity, together or separately, affect dynamics
of biomolecular feedback systems. The effect of
delays is important because any biophysical action
requires nonzero time to occur. Stochasticity is im-
portant to consider because gene networks exist in
the subcellular environment, which is a highly fluc-
tuating, heterogeneous environment.

Spatial Insights

Lattice Models
(2) Lattice Models of Spatial Systems Spatial
patterns are a widely studied phenomenon across
disciplines. Theoretical formulations of spatial pat-
terns often involve PDEs or agent-based modeling.
PDEs offer analytic tractability in many cases but
are too coarse-grained to bring to light how individ-
uals may affect macroscopic patterns. Agent-based
models incorporate detailed physics of the system in
question, but they are often too complicated to ana-
lyze and computationally expensive. Lattice models
provide a middle ground and can link how individual
interactions affect global spatial structure. They are
computationally efficient and allow for derivation of
mean field equations that can glean insights into biological systems. Lattice models I developed
have been applied to molecular motor dynamics, spatiotemporal ordering in synthetic
bacteria, and foraging ants.

(3) Social Decision-Making Most normative models of decision-making apply to individuals in
isolation. While they successfully describe decision-making in a laboratory setting, they fail to
apply to the real world, where decisions are made by incorporating other individuals’ behaviors.
I have generalized well-established Bayesian models of individual decision-making to describe so-
cial decision-making. I have developed models that reveal the effect the first decision
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Social Decision Making

in a group affects overall group decision accuracy, how correlated information affects
group accuracy, and how biases affect group accuracy in a group of rational, optimal
observers.

Though my research interests are quite diverse in scope, they are unified by the main research
questions that underlie them: how do actions and interactions at the individual level affect macro-
scopic behavior? What effect does noise impart upon the system?

In the following I provide details of my most substantive projects pertaining to each topic de-
scribed above.

1. Biomolecular Feedback Systems

Background. Biomolecular feedback systems are biological networks consisting of positive or
negative feedback [23]. Positive feedback describes a process or reaction whose output amplifies
the process. Negative feedback describes a process where the output inhibits the process [23,33,59].
Such feedback loops are prominent across scales, ranging from interactions at the molecular and
genetic level through the tissue and organ level [13, 37, 42, 43]. A formal elucidation of several
types of biomolecular feedback was first presented by John Tyson in the early 2000s [64]. Since
then, feedback systems have become a hallmark of several theoretical studies of various biological
systems.

There is a rich literature surrounding theory of bimolecular feedback systems, but most models
studied are comprised of ODEs. While significant, they do not take into consideration inherent
delays or noise. Modeling biomolecular feedback loops with DDEs or stochasticity renders more
biologically plausible outputs from models. In the following, I describe some recent projects in this
capacity.

1.1. Stochastic Delays in Delayed Negative Feedback. Delayed negative feedback is a paradig-
matic BFS whose signature temporal dynamic is oscillations [33, 41, 43, 59, 64, 70]. It describes a
process wherein the output of a reaction inhibits the reaction following a temporal delay. A simple
model of delayed negative feedback is as follows. Let y(t) be a scalar field evolving according to

(1) dy

dt
= I − γy − w

y(t − τ)n

Kn + y(t − τ)n
.

Here, y(t) could represent the concentration of a protein that is constitutively produced at a rate I
and inhibits its own production. The first order rate constant γ describes the natural degradation
rate of the substance y. The weight w to describe the strength of the autoinhibition based on
Michaelis-Menten kinetics. For sufficiently small τ , Eq. (1) exhibits a stable equilibrium. However,
for delay values past some critical value, τc, the system admits a limit cycle, having undergone a
supercritical Hopf bifurcation at τ = τc (see Fig. 1).
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This feature of delayed negative feedback systems is so ubiquitous that experimentalists often
immediately attribute any observed oscillations in the lab to it. However, intracellular protein
dynamics are subject to noisy, heterogeneous environments, so investigating how noise affects such
oscillatory dynamics is necessary [16].

Here, we implement stochasticity in delay equations
by taking the delay to evolve in time according to a
continuous-time discrete Markov process. Explicitly, consider
a general autonomous delay differential equation of the form

dy
dt

¼ GðyðtÞ, yðt$ tðtÞÞÞ: ð2:5Þ

Here y(t) is the same scalar field and τ(t) varies in time sto-
chastically between N [ N states. Let τi denote the delay
corresponding to the ith state so that τ∈ {τ1, τ2, …, τN} at
any given time t, and let Q(τi, t) denote the probability that
τ = τi at time t. The dynamics of τ are then completely
characterized by the master equation

dQ
dt

ðti, tÞ ¼
XN

j¼1j=i
W j!iQðt j, tÞ $Wi!jQðti, tÞ, ð2:6Þ

where Wi!j denotes the propensity of the transition τi→ τj.
Equations (2.5) and (2.6) together form a so-called stochastic
hybrid system—a systemwherein the state of the system evolves
stochastically, but within each state evolves deterministically.
Such systems are also called a piecewise deterministic Markov
process (PDMP) [19,39,50].

2.3. Stochastic delayed negative feedback
We now implement stochastic switching in equation (2.1) by
taking τ to evolve according to a two-state Markov process,
τ∈ {τ1, τ2} with W1!2 ¼ a and W2!1 ¼ b so that

dQðt1, tÞ
dt

¼ bQðt2, tÞ $ aQðt1, tÞ

¼ b$ ðaþ bÞQðt1, tÞ: ð2:7Þ

The last equality follows from the fact that Q(τ1, t) +Q(τ2, t) =
1 for this model. When τ is fixed, equation (2.1) has a well-
defined Hopf bifurcation point at τ = τc. Indeed, for τ1, τ2 >
τc substituted into equation (2.1), the system admits a limit
cycle with amplitude and frequency determined by the corre-
sponding delay. Numerically simulating equation (2.1) with
switching given in equation (2.7) indeed shows dynamics
wherein the solution jumps between limit cycles (see
figure 2b). However, in many situations, transitions between
states of a PDMP are fast relative to the other dynamics of
the system. Simulations of the stochastic hybrid system
with τ1, τ2 > τc and a ¼ a=1 and b ¼ b=1 for 0 , 1 & 1
show that the system contracts to the equilibrium (see
figure 3). This result is not intuitive.

3. General formulation
To understand what causes the stabilization of the fixed point
with fast stochastic delay switching, we consider a microscopic
model for delayed negative feedback. We begin with a delayed
master equation [51] and then invoke a van Kampen expan-
sion to derive a Smoluchowski equation for the probability
density of the stochastic variable undergoing delayed negative
feedback. We begin by writing the master equation analogue
of equation (2.1) with τ undergoing a continuous-time discrete
Markov process with N states: {τ1, τ2, …, τN}.

Let dðtÞ [ N be a random variable whose dynamics are
governed by the reactions delineated by equation (2.1).
Thus, d(t) could represent the number of translated protein
molecules. Let P(m, t, τ) be the probability that d =m at
time t and that the current delay value is τ. The dynamics
of P(m, t, τ) can be written as

dPðm, t, tiÞ
dt

¼ IðPðm$ 1, t, tiÞ $ Pðm, t, tiÞÞ

$ gðmPðm, t, tiÞ $ ðmþ 1ÞPðmþ 1, t, tiÞÞ

$ w
XN

j¼1

X1

M¼1

Mn

Kn þMn ðPðm, t, t j; M, t$ ti, t jÞ

0

@

$ Pðmþ 1, t, t j; M, t$ ti, t jÞÞ

1

A

þ
XN

k¼1,k=i

Wk!iPðm, t, tkÞ $Wi!kPðm, t, tiÞ:

ð3:1Þ

The first two terms correspond to constitutive protein
production and natural degradation, respectively. The tran-
sitions between distinct delay values are captured in the
last two terms of equation (3.1). The delayed negative feed-
back manifests in the middle terms of equation (3.1) and
consists of the joint probabilities P(m, t, τj; M, t− τi, τj) of
having m protein molecules at time t while τ = τj, and M
protein molecules at time t− τi while τ = τj. Asserting that M
protein molecules must exist at time t− τi means that delayed
negative feedback can occur only if protein molecules exist to
cause the negative feedback. Equation (3.1), therefore,
describes a non-Markovian process, since the value of d(t)
depends on the value of d(t− τi). Thus, equation (3.1) is not
closed on the level of one-time quantities. Indeed, to deter-
mine the dynamics of the joint probability distributions,
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Figure 1. Simple model of delayed negative feedback. (a) Schematic of biological motivation for equation (2.1): a protein leads to inhibiting its own production
with delay τ, and also degrades. (b) Two solutions of equation (2.1) for different values of τ. For long delays, oscillations occur, and for short, steady state is
achieved. The threshold Hopf bifurcation between these behaviours is described by equation (2.4).
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Figure 1. τ -dependent supercritical Hopf bifurcation
in Eq. (1).

How to incorporate noise to describe intracel-
lular processes is an open question [16, 36, 63].
Here, we take τ to be time-dependent and to
evolve according to a continuous time Markov
chain on a finite discrete set, τ ∈ {τ1, τ2, ..., τN }
with N ∈ N. The model therefore couples
Eq. (1) with a master equation for Q(τi, t), the
probability that τ = τi at time t:

(2) dQ

dt
(τi, t) =

N∑
j=1

WjiQ(τj , t) − WijQ(τi, t),

where Wij denotes the propensity of the tran-
sition τi → τj and Wjj = 0. Equations (1) and
(2) together form a so-called stochastic hybrid system—a system wherein the state of the system
evolves stochastically, but within each state the system evolves deterministically [15].

We found that if the transitions between states occurred fast enough, oscillations disappeared
from the dynamics of Eq. (1), even if each τi > τc. To understand why, we invoked the van
Kampen [65] and quasi steady state [16] approximations upon Eqs. (1) and (2) to compute the
effective equation governing the dynamics. In the case N = 2, we found that effective equation was

(3) dyeff
dt

= I − γyeff − β

β + α

wyeff(t − τ1)n

Kn + yeff(t − τ1)n
− α

β + α

wyeff(t − τ2)n

Kn + yeff(t − τ2)n
.

4.1. Stabilization via stochastic switching
Setting the time derivative equal to zero in equation (4.2) and
solving for the equilibrium gives the same solution y* as
obtained from equation (2.2). The linearization of equation
(4.2) about y* yields

du
dt

¼ "gu" wb
aþ b

f 0ðy%Þuðt" t1Þ "
wa

aþ b
f 0ðy%Þuðt" t2Þ

where uðtÞ ; yeffðtÞ " y%.
As in §2.1, we invoke the ansatz u(t) =A eλt and deter-

mine λ from the auxiliary equation

l ¼ "g" wb
aþ b

f 0ðy%Þ e"lt1 " wa
aþ b

f 0ðy%Þ e"lt2

Setting λ = iω yields the following conditions for a Hopf bifur-
cation in equation (4.2):

v ¼ w
a

aþ b
f 0ðy%Þ sin ðvt1Þ þ w

b

aþ b
f 0ðy%Þ sin ðvt2Þ

"g ¼ w
a

aþ b
f 0ðy%Þ cos ðvt1Þ þ w

b

aþ b
f 0ðy%Þ cos ðvt2Þ

"v

g
¼ a sin ðvt1Þ þ b sin ðvt2Þ

a cos ðvt1Þ þ b cos ðvt2Þ

9
>>>>>>>>=

>>>>>>>>;

ð4:3Þ

In figure 4, we show the locus of Hopf bifurcation points in
parameter space for equation (4.2) and compare it with the
Hopf bifurcation points for the single delay equation given
in equation (2.1). We can see that there are regions of par-
ameter space wherein τ1 and τ2 are larger than the single
delay critical Hopf value but the system continues to reach
the fixed point. Hence, the fast switching between delays in
the stochastic system causes the effective behaviour of the

system to behave as if the feedback followed two distinct
delay values simultaneously. The presence of multiple
delays increased the range of delay values for which the
fixed point was stable.

When switching is not fast, then the increased stabiliz-
ation of the fixed point is not observed. Although it is
challenging to analytically investigate this scenario, numeri-
cal investigation via stochastic simulation is straightforward
and can be seen in figure 5. Explicit stochastic simulations
are performed by sampling the continuous-time Markov
chain and solving the delay differential equation between
these events. The system is simulated for t∈ [0, 100], and
over the window t∈ [90, 100], the minimum and maximum
values are taken, as presumed magnitudes of any oscillations
after the transient portions have decayed. As waiting times
are increased (1 large), the system spends enough time in
each delay state so that the effective dynamics follow a
single delay equation for the duration of time in that state.
Periodic solutions corresponding to the delay of the state
emerge. As the waiting time is decreased (1 small), the effects
of the second delay term emerge and the stabilization of the
fixed point is observed (see figures 3 and 5).

5. Conclusion
We summarize the main contributions of the manuscript as
follows. Most generally, we have derived an effective delay
equation in the limit of fast switching between subsystems
with different delays that evolve via a continuous-time
Markov chain. A priori, it is not clear whether the behaviour
when rapidly switching between systems can be replaced by
one effective delay. Here, we answer that possibility in the
negative for nonlinear systems, similar to the semi-discretized
case [37]. We used this result to investigate a classical model
of delayed negative feedback with a new twist of stochastic
switching between two delays. In our stochastic model, we
showed that sufficiently fast stochastic switching between
two delays stabilizes the system where each delay alone
produces oscillations.

Our results sit within broader biological and mathemat-
ical contexts. First, we note the relation to the literature on
distributed delay systems, especially in models of genetic
feedback. The effective dynamics derived here arising in the
fast switching limit (4.2) are exactly the form of distributed
delay descriptions of genetic feedback considered elsewhere
[23,31,59]. We have, therefore, provided further mechanistic
motivation for the inclusion of these distributed delay
systems. We show that a Hopf bifurcation in the total switch-
ing rate occurs, indicating that fast switching and slow
have fundamentally different behaviour. This nuance in
timescales of stochasticity does not exist in descriptions
with distributed delays.

Stochastically switching delays add a new vignette
to the broader theme of stochasticity in genetic feedback.
Importantly, we consider stochasticity only in the delay to
emphasize its impact on the behaviour of the system. This
is in contrast with other studies where stochasticity is
included in genetic feedback in other ways and new beha-
viours appear. For instance, molecule counts in the genetic
machinery are low enough to justify exploring demographic
fluctuations [21]. Demographic noise can destabilize oscil-
lations [27], whereas distributed delays can sharpen them
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Figure 4. Bifurcation structure for the effective delay equation found in (4.2).
In the heatmap, the maximum of the power spectrum S(ω) is shown. The
dashed boundary lines for the two-delay system correspond to the linear
stability analysis in equation (4.3). The dotted lines correspond to the
Hopf boundary for a single delay equation (2.4). The star shows the
choice of delays used elsewhere unless noted otherwise. For these delays,
the oscillations of each subsystem are stabilized by sufficiently fast switching.
Symmetric transitions are considered α = 1, β = 1 so only τ1≤ τ2 need be
considered.
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Figure 2. Bifurcation structure of Eq. (3).

Surprisingly, the effective equation did not in-
clude a single effective delay, but rather incor-
porated the effects of all the delays simultane-
ously via a linear combination of the feedback
functions. Each feedback function was weighted
by the stationary measure of the Markov chain.

The equilibrium behavior of Eq. (3) is sub-
stantially different than Eq. (1). In Figure 2,
we show the bifurcation structure of Eq. (3) by
computing the spectrogram of the solutions for
sampled pairs of delays. We see a substantial
region past τc in the two-delay case where os-
cillations are not observed.

The mathematical novelty of this work was
the computation of the effective multi delay
equation in the fast switching limit, providing
further mechanistic justification for delay distri-
butions commonly used in gene network mod-
els. Biologically, it is fascinating that noise
undoes a common feature of delayed negative

feedback–namely oscillations. How the effects of delays in the delay interact with other sources of
noise to impact dynamics is an intriguing area of potential future work.
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1.2. Oscillations in Delayed Positive Feedback Systems. Positive feedback is ubiquitous in
biological systems and serves to produce switch-like responses to input. This feedback often results
in bistability, in which there are two stable equilibrium states that the system can be in, depending
on its starting conditions. Classic examples involving two agents are the toggle switch [29], in
which one agent is activated and the other inactivated, and the one-way switch [8] in with either
both agents are activated or both inactivated. In neither case are oscillations in activity levels
expected. Indeed, the whole point of the positive feedback is to make the system regenerative, so
input produces either a large response or no response at all.

We recently discovered that positive feedback systems can exhibit oscillatory behavior [55]. If
explicit temporal delay is taken into consideration, oscillations may appear. Importantly, the
oscillations are not an asymptotic state—that is, there is no limit cycle. Rather, the oscillations
are a long-lasting transient, often persisting for several periods, before the dynamics contract to
one of the bistable equilibria. We will show this with a simple model of the toggle switch, with
explicit temporal delay included. Let x(t) and y(t) be scalar fields evolving according to

(4) dx

dt
= α

1 + y(t − τ)n
− x

dy

dt
= α

1 + x(t − τ)n
− y,

where α represents the maximal production rate of x and y and n > 0 is the Hill coefficient
characterizing the interaction. Here, x and y could represent the concentrations of enzymes that
inhibit each other, such as Cdc2-Cyclin B and Wee1 in the cell cycle [5, 64]. Though Eq. (4)
describes two species inhibiting one another, each species provides positive feedback onto itself by
deactivating its repressor. Thus the net effect of x on x and y on y is positive feedback.

Phys. Chem. Chem. Phys. This journal is © the Owner Societies 2024

distance from WS
I influenced the number of oscillations pro-

duced, we extended a line orthogonal to WS
I and sampled pairs

of initial conditions for x and y on this normal line. We then
simulated the delay system with each initial condition pair. The
number of oscillations is shown as a function of the Euclidean
distance (D) to WS

I in Fig. 4B. This decreases monotonically

with distance from WS
I , suggesting that the transient oscilla-

tions are driven by flow near WS
I .

3.2 Delayed mutual activation

We set n o 0 in system (3) to model delayed mutual activation
(Fig. 3D). Similar to the previous model, this system displays
bistability and sample trajectories on either side of WS

A are
shown in Fig. 3E. As in the delayed mutual inhibition case, we
superimposed the trajectories from the ODE system (1) with
identical parameters and initial conditions. The results show
that the trajectories without delay (black) approach the stable
steady states without oscillation, but the trajectories with delay
(color) oscillate roughly parallel to WS

A before eventually
approaching a steady state. A sample time series for the state
variable x is given in Fig. 3F and exhibits long-lasting oscilla-
tions before reaching a steady state.

As in the previous model, we simulated the delayed mutual
activation model for varying delay values t to explore how
oscillation duration changed. Results are summarized in Fig. 5A.
For small t the system displays a small number of transient
oscillations. However, increasing t to sufficiently large value leads

Fig. 3 Dynamics of eqn (3) for a = 10, n = 2, t = 6 (A)–(C) and a = 2.15, n = !2, t = 8 (D)–(F). Left column: schematics of the biomolecular feedback
system. Middle column: dynamics in the xy-plane with actual or approximate separatrices WS

I (top) and WS
A (bottom) superimposed as dashed lines and

sample trajectories from eqn (3) plotted (color). Black trajectories are solutions of eqn (1) for the same initial conditions. Right column: sample time series.
The abscissa shows the oscillation number, using the fact that the period T E 2t to scale time.

Fig. 4 (A) Number of oscillations as a function of t for the delayed mutual
inhibition model. Initial data are x(t) = 4 and y(t) = 3 for t A [!t,0] in each
case. (B) Number of oscillations as a function of the distance from WS

I .
The delay t = 6 is each case. For both panels, a = 10 and n = 2.
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Figure 3. The delayed toggle switch. (A) Schematic. (B) Projection of phase space onto
two dimensions. Blue and red curves are solutions to Eq. (4) demonstrating oscillatory
dynamics on either side of the seperatrix. Black curves are solutions to the corresponding
ODE system, showing how much information is missed by it. Dashed line is the seperatrix,
and for this system is the line y = x.

For n ≥ 2, Eq. (4) is bistable [2] (see Fig. 3B), with the seperatrix being the stable manifold
of the saddle point between the two stable equilibria. In general, determining the stable manifold
of an infinite-dimensional system is difficult, but for Eq. (4), the projection of the stable manifold
onto the xy–plane is the line y = x [9] (Fig. 3B dashed line). Along this invariant manifold, Eq. (4)
reduces to the single equation

(5) dx

dt
= α

1 + x(t − τ)n
− x,

4
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which is a model of delayed negative feedback, meaning for sufficiently large τ values, the system
admits a persistent oscillation via a supercritical Hopf bifurcation. Importantly, only along the
stable manifold does the persistent oscillation exist. Moving slightly off the stable manifold im-
mediately renders the oscillation a transient. However, they last for many cycles (see Fig. 3C)
and they resemble the oscillation along the stable manifold. As such, we call these long-lasting
transients remnants of the delayed negative feedback oscillator.
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I , suggesting that the transient oscilla-
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3.2 Delayed mutual activation

We set n o 0 in system (3) to model delayed mutual activation
(Fig. 3D). Similar to the previous model, this system displays
bistability and sample trajectories on either side of WS

A are
shown in Fig. 3E. As in the delayed mutual inhibition case, we
superimposed the trajectories from the ODE system (1) with
identical parameters and initial conditions. The results show
that the trajectories without delay (black) approach the stable
steady states without oscillation, but the trajectories with delay
(color) oscillate roughly parallel to WS

A before eventually
approaching a steady state. A sample time series for the state
variable x is given in Fig. 3F and exhibits long-lasting oscilla-
tions before reaching a steady state.

As in the previous model, we simulated the delayed mutual
activation model for varying delay values t to explore how
oscillation duration changed. Results are summarized in Fig. 5A.
For small t the system displays a small number of transient
oscillations. However, increasing t to sufficiently large value leads
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inhibition model. Initial data are x(t) = 4 and y(t) = 3 for t A [!t,0] in each
case. (B) Number of oscillations as a function of the distance from WS
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The delay t = 6 is each case. For both panels, a = 10 and n = 2.
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Figure 4. Duration of transient oscillations with respect to τ and ∆.

The duration of the
transient depends on
the value of τ and the
distance, ∆, from the
stable manifold. No-
tably, the number of
oscillations increases su-
perlinearly as τ is in-
creased and decreases
as the distance of
the initial data from
the stable manifold in-
creases.

We examined var-
ious delayed positive
feedback systems, and
the properties that hold for the toggle switch appear to hold in general. That is, long-lasting
oscillations exist in the phase space of delayed positive feedback systems. They are driven by a
persistent oscillation that exists along an invariant manifold of the phase space.

Though the oscillations are transient, they could be sufficiently long-lasting so as to outlive
the species or cell within which they occur. This result fundamentally challenges current
understanding of mechanisms driving biological oscillations. Positive feedback loops are
designed to resist oscillating. Protein oscillations are abundant in biological systems [17,35,49]. It
is unlikely that all of them are driven by delayed negative feedback. The implication of our work is
that oscillations observed in the lab may be driven by positive feedback, which is unprecedented.
Oscillations observed in the experimental lab are often attributed to delayed negative feedback.
Our results here argue that that assumption could prevent investigation into the true mechanism
that may underlie biological oscillations in specific cases.

1.3. Further Reading.

(1) B. R. Karamched and C. E. Miles. Stochastic Switching of Delayed Feedback Sup-
presses Oscillations in Genetic Regulatory Systems. Journal of Royal Society Interface. 20:
20230059 (2023) (summarized above)

(2) C. J. Ryzowicz, R. Bertram, B. R. Karamched. Oscillations in Delayed Positive Feedback
Systems. Physical Chemistry Chemical Physics. 26, 24861-24869. (2024) (summarized
above)

(3) R. Godin, B. R. Karamched, S. D. Ryan. The Space Between Us: Modeling Spatial
Heterogeneity in Synthetic Microbial Consortia Dynamics. Biophysical Reports. 100085.
(2022)

(4) F. Bai, R. Bertram, and B. R. Karamched. A Mathematical Study of the Efficacy
of Possible Negative Feedback Pathways Involved in Neuronal Polarization. Journal of
Theoretical Biology. 111561. (2023)
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(5) B. R. Karamched, G. Hripcsak, R. L. Leibel, D. Albers, and W. Ott. Delay-Induced
Uncertainty in the Glucose-Insulin System: Pathogenicity for Obesity and Type-2 Diabetes
Mellitus. Frontiers in Physiology. 13:936101 (2022)

(6) B. R. Karamched, G. Hripcsak, D. J. Albers, and W. Ott. Delay-Induced Uncertainty
in a Paradigmatic Glucose-Insulin Model. Chaos 31 023142. (2021)

2. Lattice Models of Spatial Systems

Background. Lattice models have a rich history in biological modeling. They provide a valu-
able framework for modeling complex spatiotemporal dynamics in biological tissues. They are an
alternative to agent-based models and PDEs for modeling emergent spatiotemporal patterning.
Agent-based models provide realistic models of biological tissues and populations, but are often
intractable and computationally expensive. Partial differential equation models offer scope for
analysis, but they often coarse grain dynamics so that an individual’s impact on the population
is unclear. Lattice models capture individual properties at a high level but nevertheless sacrifice
some fidelity to reality for the sake of analytical tractability. Often times, one can invoke a mean
field approximation to derive an effective equation to describe overall dynamics of the microscopic
configurations of the lattice.

Lattice models have been used to model protein folding [58], cancer initiation and progres-
sion [45, 46], and motor protein transport through a cell [12, 14, 47], amongst numerous other
applications [10, 21]. Here I will describe in detail lattice models I developed for understanding
(1) emergent spatiotemporal ordering in synthetic microbial consortia and (2) trail formation in
foraging ants.

2.1. Cell Alignment in Extended Microfluidic Traps. A central goal of synthetic biology
is the construction of practical, engineered genetic circuits for medical and industrial applica-
tions [8, 19]. Critical to this goal is the elucidation of the fundamental mechanisms that govern
gene regulation at all levels.

a

b

Figure 1: (a) A monolayer of E. Coli in an open microfluidic trap with cells aligned orthogonally to the trap’s long side. Colors represent distinct
strains. (b) In our spatial Moran model cell growth is directional and location dependent: The outlined vertical cell can grow only upward or
downward at a location-dependent rate. The red arrow indicates growth direction, so the cell above will be replaced by a descendant of the outlined
cell. We model single strain populations, but use the same color for mother and daughter cells for visualization.

dpij

dt
= v+

k (i � 1)p(n(i�1)j = 1, nij = 0, t) + v�k (i + 1)p(n(i+1)j = 1, nij = 0, t)

� h+
k (j � 1)p(ni(j�1) = 0, nij = 1, t) � h�k (j + 1)p(ni(j+1) = 0, nij = 1, t),

(1)

where p(nij, nkl , t) are joint occupation probabilities at time t. The first two terms in Eq. 1 correspond to
horizontal-to-vertical cell transitions through displacement by a descendant from a cell either above or below.
The second two terms describe the opposite transition. The rates v±

k (i) represent a vertical cell’s propensity
to grow toward the top or the bottom of the trap when it is located in the ith row. The rates h±

k (j) are
defined similarly for horizontal cells in the lattice. Growth rates are determined by a one-parameter family
of functions, with the parameter k 2 [0, •) characterizing the population’s impact on growth. This family
can be general, but we assume that growth rates are positive and satisfy three conditions: (1) There exists a
l 2 (0, •) such that v±

k (i), h±
k (j) ! l as k ! 0 for all i, j; (2) Maximal growth rates occur at the boundaries,

v+
k (M) = v�k (1) = h+

k (N) = h�k (1) = l; (3) v±
k (i), h±

k (j) decrease monotonically with distance from the
boundary that maximizes their value. Condition (1) states that cells grow uniformly at rate l in the absence
of interactions (k = 0). Conditions (2) and (3) reflect a cell’s tendency to grow toward the nearest boundary
and growth rate dampening from cells obstructing growth in a certain direction. Stochastic simulations of the
SMM are in agreement with solutions to Eq. 1 in the different parameter regimes. In particular, both suggest
that there exists a critical k⇤ value wherein a transition between alignment orthogonally to the long boundary
and parallel to the long boundary occurs.

To calculate k⇤ explicitly, we average Eq. 1 over all lattice sites to obtain a mean field model. Averaging
the master equation over all i, j shows that n, the fraction of vertical cells, obeys a logistic equation,

dn
dt

= 2
⇣

v̄k

�
1 � 1

M
�
� h̄k

�
1 � 1

N
�⌘

| {z }
µ(k,M,N)

n(1 � n), (2)

and n(t) = exp(µ(k, M, N)t)/(1 + exp(µ(k, M, N)t). v̄k, h̄k are the average growth rates in the vertical, and
horizontal directions, respectively. This agrees with the averaged solutions to Eq. 1 and SMM simulations
averaged over realizations (see Fig. 2).

From Eq. 2 it is clear that the all-vertical and all-horizontal equilibria exchange stability when M = N.
However, Eq. 2 provides insight into the underlying mechanism of spatial order. In particular, the growth rate,
µ(k, M, N), manifests as a competition between cell-cell interactions in the average growth rates and boundary
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Figure 5. (a) A monolayer of E. Coli in an open microfluidic trap with cells
aligned orthogonally to the trap’s long side. Colors represent distinct strains. (b)
In our spatial Moran model cell growth is directional and location dependent: The
outlined vertical cell can grow only upward or downward at a location-dependent
rate. The red arrow indicates growth direction, so the cell above will be replaced
by a descendant of the outlined cell. We model single strain populations, but use
the same color for mother and daughter cells for visualization.

Populations of E.
coli cells trapped in
microfluidic devices can
be used to study ge-
netic signaling networks
and understand how
information is commu-
nicated between ge-
netic modules distributed
across two or more
strains of bacteria. In
extended microfluidic
traps, populations are
not well- mixed; there-
fore, spatiotemporal pat-
terning of distinct bac-
terial strains plays an
important role in inter-
strain communication [1].
For example, multi-
strain consortia of E.
coli in open, rectangu-
lar microfluidic traps
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form single-strain bands
orthogonal to the long side of the trap (Fig. 5) [1]. The distribution of such bands can affect the
efficiency of communication between distinct strains of bacteria due to the limited diffusivity of quo-
rum sensing molecules. Understanding the mechanisms underlying this emergent order is therefore
important for engineering synthetic gene circuits with desired properties.

We developed an analytically tractable spatial Moran model (SMM) that captures essential
features of the dynamics of growing populations of E. coli cells and provides insight into the
emergence of these single-strain bands [38]. These capsule-shaped bacterial cells tend to grow more
slowly in crowded environments; that is, cells in the center of a trap grow slower than cells along
the boundary [20,68]. We model the microfluidic trap as an M ×N lattice and the cells as oriented
particles on the lattice (Fig. 5). The cells are in one of two orientations: horizontal or vertical.
These cells grow along the major axis of their bodies asymmetrically. We assume a cell’s growth
rate in a given direction is a monotonically decreasing function of the distance the cell is from the
boundary in that direction. The SMM shows that provided this growth-rate dampening due to
crowding, denoted by the parameter κ, is sufficiently strong, cells align orthogonally to the long
side of the trap, as seen in experiments. However, if κ decreases below a critical value κ∗, a phase
transition occurs and cells align parallel to the long side of the trap.

The transitions between various microscopic configurations of the lattice are described by a
master equation [16, 67] for the probability pij(t) that the ijth site of the lattice is occupied by
a vertical cell. Invoking a mean field approximation and averaging the resulting equation over all
of space [62] shows that the fraction of cells vertical at time t in the lattice, n(t), obeys a logistic
equation

(6) dn

dt
= µ(κ, M, N)n(1 − n) µ(κ, M, N) ≡ 2

(
v̄κ(1 − 1

M
) − h̄κ(1 − 1

N
)
)

.

Here, v̄κ and h̄κ are effective growth rates in the vertical and horizontal directions, respectively,
and emerge from the mean field. The directional growth rates decrease exponentially as a cell’s
distance to the boundary in that direction grows. The logistic growth rate µ conveys that whether
all cells are vertical or horizontal at equilibrium is determined by a competition between κ and the
boundaries of the domain.

effects. Therefore, there exists a critical k⇤ value at which boundary effects dominate cell-cell interactions. For
fixed M, N, this transition point satisfies µ(k⇤, M, N) = 0.

We show how k⇤ scales with trap size for different interaction kernels. To reduce parameter number,
we fix M and N and use a single parameter, s, to determine lattice dimensions as sM ⇥ sN. We find that for
exponential interaction kernels of the form v+

k (i) = le�k(M�i),

k⇤ ⇠ 2/(MNs2) ⇠ s�2. (3)

For interaction kernels of the form v+
k (i) = l/(1 + k(M � i)a), a 2 (0, •),

k⇤ =
(a + 1)(N � M)

sa+1MN(Na � Ma)
⇠ s�(a+1)

for large s.
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Figure 2: (a) Comparison of MF solutions with averages over realizations of the SMM (N = 20, M = 10) . (b) k⇤ as a function of s for different
interaction kernels. Dots represent k⇤ values from Eq. (2). X’s were obtained numerically from simulations of the SMM using bisection. Dashed
line were obtained using Eq. (3). Inset: k⇤ as a function of s for different aspect ratios, G ⌘ M/N.

From a mathematical perspective, the SMM is of interest because it is completely solvable under a reason-
able mean-field approximation. That is, critical parameter values can be calculated explicitly as a function
of system size. Models that show emergence of patterns yet are completely solvable are rare. Furthermore,
the model formulation is general and can be useful in analyzing the dynamics of anisotropically growing
multi-species systems in confined environments.

Main result: Our SMM shows that equilibrium alignment of cells is a tug-of-war between boundary effects and
growth-rate dampening: boundary effects pull cell alignment to be opposite of what is observed experimentally.
Hence, our model suggests that the driving force for orthogonal alignment of cells is growth-rate modulation
at the cellular level. Importantly, my work suggests that crowding-induced growth-rate modulation must
occur at the individual cell level so that orthogonal bands of cells form at the population level, as observed
in the experiments. Furthermore, my work suggests that cell interactions in such a trap are strong. Bringing
this idea to light will be important for experimentalists because the consideration of cell interactions is an
important factor in designing experiments.

Future Work
Our model is simple enough to modify to describe a variety of situations. Strains communicate via

quorum sensing molecules. We hope to couple our model of E. coli cells in extended microfluidic traps
with equations describing the dynamics of quorum sensing molecules and how it impacts communication
between cells of distinct strains. For example, we can incorporate quorum sensing dynamics in the master
equation formulation. Let qk(i, j) denote the concentration of a quorum sensing molecule at site ij that has
been produced by a cell belonging to the strain k. The dynamics can be described by

dqk(i, j)
dt

= lpk
ij � gqk(i, j) + D(q(i + 1, j) + q(i � 1, j) + q(i, j + 1) + q(i, j � 1) � 4q(i, j)), (4)
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Figure 6. How the mean field compares with stochastic simulations of the
full model.

Setting µ = 0 allows for
the calculation of κ∗ for
any lattice with dimensions
sM × sN :

κ∗ = 2
MNs2

We computed κ∗ for sev-
eral different growth func-
tions (Fig. 6a) and sev-
eral different lattice dimen-
sions (Fig. 6b), and the
match is remarkable. The
lattice model asserts that
cell orientation occurs via
a competition between how
strongly a cell feels its surrounding neighbors versus how far it is from the boundary that will eject
it from the microfluidic trap.

We further used the same Moran model to demonstrate that in multi-strain microbial pop-
ulations, rounder cells will flush more rod-like cells out of the microfluidic trap [69]. We also
demonstrated by incorporating quorum sensing dynamics that experimentalists can dynamically
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alter the strain ratio in a microfluidic trap. This is significant for synthetic biologists as they try
to engineer microbial systems that can coordinate activity across large spatial domains.

2.2. Trail Formation in Foraging Ants. Foraging for resources is an essential process for the
daily life of an ant colony. What makes this process so fascinating is the self-organization of ants
into trails using chemical pheromone in the absence of direct communication. In the absence of
an external motivation or central control center, ants can perform complex sets of tasks [25, 26]
and exhibit macroscopic emergent behavior [22,24]. This makes them an ideal model organism for
studying the physical origins of self-organizing behavior, and understanding organization in ants
can unveil general principles of self-organization.

In order to find food for survival, ant colonies send foragers away from the nest executing a
random search process. All foragers effectively perform Brownian motion until food is found [18,52].
Once an ant finds food, it collects a morsel and makes a beeline to the nest, secreting pheromone
along the way [22, 27, 28, 30, 31, 51, 54, 61]. The pheromone signals to the other ants of where the
food is, and trail formation begins. We developed a lattice model to describe this phenomenon.

We model the general terrain as an M × N ⊂ N2 lattice and the ants as n ∈ N particles hopping
along the lattice nodes [34]. We assume that the timescale of trail formation is small enough
(approximately 4-8 hours from biological observation of army ants E. burchellii [56, 57]) that we
ignore births and death in the colony. There is no direct communication between individuals,
but rather a response to a chemical pheromone gradient if present represents the only means of
(indirect) communication. We designate a single site as the nest, x0. Initially, all n ants occupy
that designated site. To understand how the location of food sources relative to the ant nest affects
spatiotemporal structure of ant motion, we also randomly designate N ∈ N sites as food sources.
We assume the colony of ants are particles represented by a set of points {xi}, i = 1, ..., n, where
xi ∈ [1, M ] × [1, N ]. Each point can be thought of as the location of the center of mass for an
individual ant. We assume the boundaries are reflecting for ants to maintain a fixed population.

In the absence of pheromone, foragers perform a random walk on the lattice, moving with equal
probability to any site in its Moore neighborhood on a given time step (see Fig. 7. Once an ant finds
food, it makes a beeline to the nest and secretes pheromone along the way. Pheromone deposition
is modeled by a two-dimensional reaction-diffusion process for the chemical concentration c(x, t)
first introduced in [54]:

(7) ∂c

∂t
− D∆ijc + γc =

K∑
k=1

J∑
j=1

Ae
−

(
||xj(t)−x(k)

f
||
)2

δ(x − xj(t)).
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Fig. 1 Illustration of an ant on the lattice. We omit the details of an individual ant’s body such as its three
components and individual appendages/antennae in the model. Rather we simulate the change in a given
ants center of mass across the lattice network. This remains faithful to the biology by considering many
ants in a large computational domain where the individual microscopic details becomes less relevant to
understanding the macroscopic behavior

no direct communication between individuals, but rather a response to a chemical
pheromone gradient if present represents the only means of (indirect) communication.
We designate a single site as the nest, x0. Initially, all n ants occupy that designated
site. To understand how the location of food sources relative to the ant nest affects
spatiotemporal structure of ant motion, we also randomly designate N ∈ N sites as
food sources. We assume the colony of ants are particles represented by a set of points
{xi }, i = 1, ..., n, where xi ∈ [1,M] × [1, N ]. Each point can be thought of as the
location of the center of mass for an individual ant. We assume the boundaries are
reflecting for ants to maintain a fixed population2.

Ant motion is subdivided between two types of ants: (i) foraging ants and (ii)
carrying ants. Foraging ants are those that are searching for a food source.Theyundergo
an unbiased random walk (Popp and Dornhaus 2023; Charikar et al. 2011). That is, a
foraging ant at a given site moves to any adjacent site in its Moore neighborhood with
equal probability (Fig. 1). In particular, the angular deviation between fixed time steps
was measured experimentally in Pharaoh ants and shown to be well approximated by
a normally distributed random variable around the nest (Bicak 2011). At each time
step an ant picks a new site to move to based on this probability and thus all ants move
with a constant speed. A foraging ant becomes a carrying ant once it locates a food
source. Its dynamics are no longer stochastic. Upon reaching the nest, a carrying ant
again becomes a foraging ant.

Recent works have incorporated two pheromones into modeling frameworks: one
where ants carrying food mark a food source (Dussutour et al. 2009; David Morgan
2009) and another where foraging ants mark the location of the nest (Steck 2012;
Jackson et al. 2007;Ramirez et al. 2018).We assume throughout thiswork that carrying
ants know the location of their nest and we choose to forgo the second pheromone in
the model. Thus, we only implement the net result of the second chemical deposition
by assuming that individual returning ants take the direct path home toward the nest

2 In principle, such a model could be implemented on an unbounded domain and the results of this
manuscript will still hold due to 2D random walks being recurrent. Thus, there would be no loss of ants.
For the sake of computational ease, we formulate the model on a finite lattice.

123

Figure 7. Foraging ant and its
Moore neighborhood.

Here x(k)
f is the location of the K food source(s), J is the number of

food-carrying ants, ∆ij is the discrete Laplacian, D is the diffusion
coefficient controlling the rate at which the pheromone spreads, and
γ is the evaporation coefficient that ensures an exponential decay

of the pheromone in time. The coefficient Ae
−

(
||xj(t)−x(k)

f
||
)2

rep-
resents the amount of pheromone deposited at time t and decays
as a food-carrying ant moves away from the food source. This de-
crease is needed to ensure that the proper gradient forms due to the
competition with diffusion. Eq. (7) is coupled with homogeneous
Fourier-type boundary conditions.

With pheromone present, foraging ants perform a biased random
walk, where they will preferentially move to the site in their Moore
neighborhood yielding the greatest increase in local pheromone con-
centration. They maintain a non-zero probability of going into any
other site. Simulations show that in environments with a single
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Walk this way: modeling foraging... Page 11 of 26    41 

Fig. 3 Foraging Ant Dynamics: Two Equidistant Food Sources. Top row: foraging ant distribution. Middle
row: returning ant distribution. Bottom row: pheromone distribution (plotted in log scale). a The foraging
ants distribution is approximately Gaussian around the nest (center black circle) until the food sources
(purple circles) are discovered, whence pheromone is released as returners move toward the nest. b The
pheromone excretion initiates emergent self-organization of the ants into trails connecting the nest to the
food sources. c The trails are well-developed. The food source does not diminish and there is no asymmetry
in the properties of the food sources relative to the ant nest, both trails continue forever (color figure online)

reproduces the results of the more realistic agent-based model of Ryan. We also note
here that the results are consistent with experimental results (Couzin and Franks 2003;
Perna et al. 2012). In particular, the foraging trail is wider resulting in more ants on
the outside of the central trail lane. This exactly matches the qualitative observations
of ants in the experimental observations of Couzin et al. Couzin and Franks (2003)
and it is remarkably captured in our simple lattice model Fig. 2c.

Multiple Food Sources. The detailed agent-based model presented in Ryan (2016)
was lacking in one regard: whenmultiple food sources were present, the model did not
allow for the persistence of multiple ant trails connecting the nest to each food source.
Experimental studies, however, clearly show that ant colonies establish multiple ant
trails in the presence of multiple distinct food sources (Burns et al. 2021).

Our simple lattice model allows for the persistence of multiple ant trails in multiple
food source environments. In Fig. 3, we show snapshots of foraging ant dynamics in

123

Figure 8. Snapshots showing emergence of trails in an environment with two food sources.
Black circles are the nest and purple circles are food sources.

food source, ants will establish trails connecting the nest to the food source. There are several
models that do this. The main contribution of our model is that it allows for simul-
taneous trail formation to multiple food sources in environments with multiple food
sources. (see Fig. 8) Other trail formation models have failed to do this consistently, which is
problematic because simultaneous trails are established by ant colonies [3,4,22,53]. The reason our
model succeeded where others failed was we allowed pheromone-sensing foragers to have a non-zero
probability of moving away from the pheromone. This sufficed to allow for robust multiple trail
formation.

Our model predicts that if food sources are equidistant from the nest, ants will form longstanding
trails to both food sources. That is, simultaneous trails will be the stable equilibrium of our
model. If food sources are anisometric relative to the nest, simultaneous trails will form, but only
transiently. All ants eventually converge to the trail connecting to the closer food source.

We were able to write down a master equation for the transitions between the microscopic
configurations of the lattice and invoke a mean-field approximation and a continuum limit to
derive a set of PDEs for foragers. One key contribution stemming from this derivation was that we
performed a linear stability analysis and computed dispersion curves [50] to show that the presence
of food was the cause of trail formation and that its existence was necessary but not sufficient.
Parameters had to be tuned appropriately to ensure trail formation.

2.3. Further Reading.
(1) B. R. Karamched, W. Ott, I. Timofeyev, M. R. Bennett, and K. Josic. Moran Model

of Spatial Alignment in Microbial Colonies. Physica D: Nonlinear Phenomena. 395 1-6
(2020). (summarized above)

(2) S. Hartman, S. D. Ryan, and B. R. Karamched. Walk this Way: Modeling Foraging Ant
Dynamics in Multiple Food Source Environments. Journal of Mathematical Biology. 89,41
(2024) (summarized above)
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(3) F. Bai, R. Bertram, and B. R. Karamched. A Closed-Loop Multi-Scale Model for Intrin-
sic Frequency-Dependent Regulation of Axonal Growth. Mathematical Biosciences. 344:
108768 (2022)

(4) I. Kemler, B. R. Karamched, C. Neuhauser, D. Dingli. Quantitative Imaging and Dy-
namics of Tumor Therapy with Viruses. The FEBS Journal. (2021)

(5) J. J. Winkle, B. R. Karamched, M. R. Bennett, W. Ott, and K. Josic. Emergent Spa-
tiotemporal Population Dynamics with Cell-Length Control of Synthetic Microbial Consor-
tia. PLoS Comput Biol. 17(9): e1009381. (2021)

3. Social Decision-Making

Background. Evidence accumulation models describe how different organisms integrate informa-
tion to make choices. The problem of a single agent integrating evidence to decide between two
options—with only one correct—has been thoroughly studied in this capacity. In the simplest set-
ting, a Bayesian observer makes a sequence of conditionally independent noisy observations of an
environment and computes the probability that the environment is in one of two states. Once their
belief crosses one of two thresholds, signifying they accumulated sufficient evidence, they make the
analogous decision. The evidence accumulation and decision-making processes can be formulated
as a drift-diffusion SDE on a bounded, symmetric domain with absorbing boundaries [11].

The principle issue with current models of evidence accumulation and decision-making is that
they describe an observer in isolation, whereas decisions are often made in groups. Stock traders,
while not privy to all of their competitor’s information, can still observe each other’s decisions. It is
thus natural to ask how an observer should combine private measurements with social information
optimally to make decisions. In the following I provide details of some of my most substantive
recent work in this field.

3.1. Heterogeneity Improves Speed and Accuracy of Social Networks. Consider an all-to-
all network, or clique, of agents, each deciding between two options. Like day-traders, or strangers
in a market, agents make private observations and gather social evidence by observing the choices of
all other agents. They do not share private information but know the statistics of the observations
each agent makes. A decision cannot be undone.

We assume N agents accumulate noisy private observations and optimally combine them with
information obtained from observing the decisions of their neighbors to choose between two hy-
potheses, H+ or H− [39,40]. Either hypothesis is a priori equally likely to be correct. Each agent,
i, makes decisions based on their belief, yi(t), which equals the log-likelihood ratio (LLR) between
the hypotheses given all available evidence 1. After a sequence of private observations, ξ

(i)
1:t, the

belief is yi(t) = log[P(H+|ξ(i)
1:t)/P(H−|ξ(i)

1:t)]. If private observations are rapid and conditionally
uncorrelated in time and between agents, beliefs evolve according to
(8) dyi = ±αdt +

√
2αdWi,

where the sign of the drift equals that of the correct hypotheses, and Wi(t) are independent,
standard Wiener processes [11,66]. Each observer starts with no evidence, so yi(0) = 0. We further
assume that H+ is correct and α = 1.

Each agent, i, sets a threshold, θi, and chooses H+ (H−) at time Ti if yi(Ti) ≥ θi (yi(Ti) ≤ −θi),
and yi(t) ∈ (−θi, θi) for 0 ≤ t < Ti. All other agents observe a decider’s choice, but may not know
their threshold. We consider omniscient agents who know each other’s thresholds.

Without loss of generality, we assume the belief of agent i = 1 is the first to reach threshold at
time t = T . Until this decision, beliefs of all agents, yi(t) with i = 2, ..., N , evolve independently
according to Eq. (8). Upon observing the first decision, omniscient agents update their belief by

1Often the belief refers to the posterior probability of the state. The two definitions are closely related as p(H−|ξ) =
1/(1 + exp(y)).
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the evidence independently accumulated by the first decider, yi(T ) → yi(T ) ± θ1 [?]. Observing
a positive (H+) first decision causes any belief that satisfies yi(T −) ∈ [θi − θ1, θi), to cross the
positive threshold, θi, evoking a positive decision by agent i. Thus, a wave of a1 agreeing agents
follows the first choice. Each of the remaining N −a1 −1 undecided agents then obtains information
by observing who followed the first decision and who remained undecided. How do the undecided
agents make use of this newly revealed information?

For homogeneous populations (θi = θ) and sufficiently large N , we find that

(9) E[a1|y1(T ) = ±θ] ≈ N − 1
2

(
1 ± θ√

4π ln N

)
.

Thus, if the first decider chooses correctly (incorrectly) slightly more (less) than half the population
will agree with the first decision. The remaining undecided agents then reveal that their respective
private information had them leaning the opposite way before observing the first decision, and this
information causes all remaining undecided agents to update their belief by θ2N

2π ln N , which is greater
than 2θ for sufficiently large N . Thus, all agents will make a decision upon observing the first
decision. If the first decision is correct, everyone agrees with them and everyone chooses correctly.
If the first decision is incorrect, then about half the clique chooses correctly.

We model heterogeneous populations with a dichotomous population. That is, we take θi ∈
{θmin, θmax} with θmin < θmax. The parameter γ represents the fraction of agents with threshold
θmin. Surprisingly, we find that such dichotomous populations perform better than homogeneous
populations provided γ is tuned optimally. The basic idea is as follows: Agents with θmin as their
threshold decide hastily leading only other hasty agents to make a potentially ill-advised decision,
with E[a1] ≈ γN−1

2

(
1± θmin√

4π ln γN

)
. More deliberate agents can weigh this information correctly and

thereby make a correct decision.

can leverage quick, unreliable decisions to improve the
response of the population.
Dichotomous threshold distribution: The case of agents

with either a high or a low threshold is tractable and sheds
light on more general examples. Before a decision the
belief of each agent evolves according to Eq. (1) with
absorbing boundaries at −θi < 0 < θi. We assume that γN
agents share threshold θmin and ð1 − γÞN share threshold
θmax for 0 < θmin < θmax and γ ∈ ð0; 1Þ. The first decision
is then likely made by an agent with a low threshold, and is
thus fast but unreliable ([24], Sec. XII). We use the
approximation E½T$ ≈ θ2min=4 ln ðγNÞ which breaks down
when 0 < γ ≪ 1, but works well otherwise [Fig. 2(c)].
A clique under consensus bias is homogeneous from an

observer’s perspective and thus behaves like a homo-
geneous population. Indeed, the expected size of the first
wave is given by an expression similar to Eq. (5), E½a1$ ≈
ðN − 1=2Þð1% ðθmin=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4π ln γN

p
ÞÞ ([24], Sec. XIII). The

expected belief increment in the second wave is ĉ%1 ≈
θ2minγN=2π ln γN ([24], Sec. XIV) which is analogous to
Eq. (7) and is governed by the timing of the first choice
[Fig. 2(e)]. In large populations decisions happen quickly,
before the belief distributions can interact with the boun-
daries. Therefore ĉ%1 is approximately independent of the

observer’s threshold: following the first wave all agents
make the same update.
As in homogeneous networks, ĉ%1 grows with N, and

when ĉ%1 ≥ 2θmax, we expect all agents to decide by the
second wave. If the first decision is correct, the entire clique
follows. A wrong first choice is followed by about half the
network [Fig. 2(d)], while the second wave decides
correctly. Hence under consensus bias, dichotomous cli-
ques behave like homogenous cliques with threshold θmin:
uninformed agents govern decisions, leading to fast,
inaccurate choices.
In contrast, omniscient agents correctly weigh evidence

revealed by a hasty first decider. We expect about half
of the low-threshold agents, γN=2, to decide in
the first wave. Indeed, we find E½a1$ ≈ ðγN − 1=2Þ
ð1% ðθmin=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4π ln γN

p
ÞÞ. The evidence revealed by a few

low-threshold agents is unlikely to sway high-threshold
agents [Fig. 3(a)]. However, if the subpopulation of low-
threshold agents is sufficiently large, the difference
between those convinced and unconvinced by the first
choice triggers a correct decision in the rest of the
population [Figs. 3(b) and 3(c)].
Thus, in a network of omniscient agents, hasty observers

govern the speed of the first decision and comprise the first
wave. The remaining agents can then observe the choices of
the early adopters to make the right decision. The fraction
of wrong decisions can thus be smaller than in homo-
geneous networks.
In finite populations this argument requires γ and θmin to

be large enough for the first wave to convince the remainder
of the population [Fig. 3(a)] but small enough to buffer the
majority from following an incorrect first choice
[Fig. 3(b)]. Hence, the population makes the best decisions
at intermediate values of γ and θmin [star in Fig. 3(d)]. A
balance is reached when ĉ−1 ¼ 2θmax ([24], Sec. XVII),
which corresponds to a fraction of low-threshold agents
given by

γ ≈
4πθmax

N
lnN
θ2min

: ð8Þ

Maximal accuracy is achieved when this balance holds
[star, white line in Fig. 3(d)]. Almost all agents decide by
the second wave [Fig. 3(e)].
Finite populations with dichotomous thresholds can

sacrifice a small fraction of early adopters so the majority
makes a fast, correct choice. Agents in heterogenous
networks can thus decide more quickly and outperform
agents in homogeneous networks in recovering from a
wrong first choice [Figs. 3(c) and 4].
Different threshold distributions: With different distri-

butions supported on the interval ½θmin; θmax$ the expected
time to the first decision is again governed by θmin. Under
consensus bias E½a1$ ≈ N − 1=2½1% ðθmin=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4π lnN

p
Þ$

([24], Sec. XX). In either case, ĉ%1 satisfies Eq. (7) with

(a)

(d) (e)

(b) (c)

FIG. 3. Balancing hasty and deliberate decisions in dichoto-
mous cliques. (a) With few low-threshold agents, the remaining
agents receive insufficient information to decide after the first
wave. (b) With many low-threshold agents, a wrong first decision
sways much of the network. (c) With the right number of low-
threshold agents, a few hasty agents follow an incorrect decision,
but the difference between agreeing and disagreeing low-thresh-
old agents drives the rest to choose correctly. (d) Fraction of the
clique choosing accurately for a dichotomous threshold clique.
White line represents Eq. (8). (e) Fraction of the clique deciding
by the end of the second wave. Isoclines indicate time to first
decision. N ¼ 15 000 in (b) and (c).
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Figure 9. Graphical description of optimal γ value.

A dichotomous clique
performs optimally for a
particular value of γ. The
basic idea is as follows. If
γ is small, then not enough
information is obtained by
observing the first wave of
decisions (Fig. 9a). The
vast majority of remaining
agents are undecided and
the time required for every-
one to make a decision is
long. On the other hand,
if γ is too large, then all de-
liberate agents choose cor-
rectly after observing the

first decision (Fig. 9b). But too many agents are sacrificed to the wrong decision for this result.
These two effects counteract at a critical γ value (Fig. 9c). Thus, not only do heterogeneous
cliques decide more accurately, they also decide more quickly due to the hasty initial
decision!

This result holds for more general θ distributions. For example, taking θ ∼ U [θmin, θmax] yields
similar results (see Fig. 10). Due to the relevance of this work, particularly during election years,
we received significant media attention.

3.2. Further Reading.
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θmin replacing θ. For sufficiently large N, ĉ!1 > 2θmax.
Therefore, under consensus bias the clique again behaves
as a homogeneous clique with threshold θmin.
The omniscient case is more complicated, but simula-

tions show that trends observed in the dichotomous case
persist for a large class of threshold distributions. Hasty
agents decide first, and deliberate agents decide based on
which early adopters followed the first choice (Figs. 4 and
S10), leading to faster and more accurate choices than in
homogeneous networks.
Conclusion.—Our model of collective decision making

is analytically tractable and shows how diverse populations
can make better decisions than homogeneous ones, extend-
ing previous results [6,17–19]. Previous models often
described agents forced to make decisions in sequence
[27], while we assumed agents decide when faced with
sufficient evidence. Decision-makers in real social net-
works likely combine these strategies, leading to asyn-
chronous but clustered decisions.
Our work may describe why social organization emerges

in animal groups. For example, low decision thresholds
promote quick decisions based on little evidence, character-
istic of “bold” individuals observed across the animal
kingdom [39]. Such individuals may emerge as leaders
since they often decide first. “Shy” individuals who require
more evidence to make decisions may follow [40,41].
More realistic features can be included in our model:

observations could be correlated [42] and agents could
accumulate evidence at different rates, giving inhomo-
geneous drift and diffusion coefficients [22,23]. Our
framework can thus be extended to understand decisions
in diverse communities.
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4. Other Work

Here I briefly summarize other work I’ve done in each of the subdisciplines.

4.1. Biomolecular Feedback Systems. Since 2021, I have modeled biological processes involving
biomolecular feedback and developed theory regarding it. In collaboration with Krešimir Josic̀ and
Will Ott, I developed a stochastic model of synthetic E. coli cells in spatially extended domains
and showed that if two types of cells communicate via positive feedback, they dynamically alter
their spatiotemporal patterns [69]. Building on this, with Shawn Ryan, I developed a PDE-DDE
model demonstrating that synchronization of oscillations in protein concentrations in synthetic E.
coli across a large spatial domain was facilitated by positive feedback loops coupled with negative
feedback loops. The delay here captured the time for protein production and diffusion across the
domain [32]. I developed a model of neuronal polarization—the process by which symmetrically
arranged protrusions from the unpolarized neuron suddenly break symmetry and choose exactly
one of their protrusions to be the axon (electrical signal propagator) and the rest to be dendrites
(signal receivers) [7]. Analysis involved understanding how additive noise facilitated transfer of a
particle between potential wells in a positive feedback system. Our model was the first rigorous
theoretical formulation of the neuron polarization problem. These were done in collaboration with
Richard Bertram and my first Ph. D. student, Fan Bai. Furthermore, with Will Ott and Dave
Albers, I investigated the role delay plays in onset of chaos in a paradigmatic glucose-insulin model.
We followed up by investigating some clinical implications [37,42]

4.2. Lattice Models. With my student Fan Bai and Richard Bertram, I developed detailed bio-
physical models of motor transport to bring to light how interactions of the motors themselves at
the subneuronal level affect length homeostasis in the neurons [6]. The motor interactions were cap-
tured via nonlinear PDEs derived from a Totally Asymmetric Simple Exclusion Process (TASEP).
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Our model coincided with two previously published experimental reports and predicted that a traf-
fic jam of motors would cause neuronal length to grow. With David Dingli and Claudia Neuhauser,
I developed a lattice model to investigate spatial dynamics of oncolytic virotherapy—a relatively
novel therapeutic for treating cancerous tumors [44]. With Krešimir Josic̀ and Will Ott, I devised
a lattice model to demonstrate how multi-strain microbial consortia with distinct shapes for each
strain can be used to control spatiotemporal patterns [69].

4.3. Social Decision-Making. In follow up papers from what is described above, we developed
a rigorous model of decision-making when information is correlated, which is more pertinent to
real world settings [60]. Thereafter, we developed our models for including initial bias from the
observers [48]. Each model has been an incremental improvement on classical evidence accumulation
models, with each becoming more pertinent to real life. These models allow for comparison with
data from social network sites and can divulge where humans deviate from optimality. This work
was done with Zachary Kilpatrick, Krešimir Josic̀, and Will Ott.
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