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Introduction. My interests lie in the interdisciplinary field of Biomathematics. Broadly speaking,
my current research focuses on stochastic processes, dynamical systems, nonequilibrium statistical
physics, and control theory, with particular applications to biomolecular feedback systems, spa-
tiotemporal ordering in biological systems, and social decision-making. I am specifically interested
in developing mathematical models of biological and decision-making processes and analyzing them
with mathematical techniques to unveil fundamental principles underlying them. Over the past five
years, I have worked extensively in three primary areas:

(1) Biomolecular Feedback Systems Biomolec-
ular feedback systems (BFS) are a hallmark of bi-
ological modeling, and specifically have been used
to describe gene network motifs and how they affect
macroscopic protein concentration dynamics. How-
ever, most existing models of BFS are comprised of
ODEs. While such models can be insightful, they do
not grasp key details that could affect protein out-
put. My research into BFS involves investiga-
tion of the roles temporal delay and stochas-
ticity, together or separately, affect dynamics
of biomolecular feedback systems. The effect of
delays is important because any biophysical action
requires nonzero time to occur. Stochasticity is im- v
portant to consider because gene networks exist in Biological Insights
the subcellular environment, which is a highly fluc-

tuating, heterogeneous environment.

Biomolecular
Feedback
Systems

(2) Lattice Models of Spatial Systems Spatial
patterns are a widely studied phenomenon across Lattice Models
disciplines. Theoretical formulations of spatial pat-
terns often involve PDEs or agent-based modeling.

PDEs offer analytic tractability in many cases but q ‘ O
are too coarse-grained to bring to light how individ-
uals may affect macroscopic patterns. Agent-based
models incorporate detailed physics of the system in ‘ ’ ‘

question, but they are often too complicated to ana- ‘ rO O

O
O|@|O

lyze and computationally expensive. Lattice models
provide a middle ground and can link how individual i -
interactions affect global spatial structure. They are Spatial Insights
computationally efficient and allow for derivation of

mean field equations that can glean insights into biological systems. Lattice models I developed
have been applied to molecular motor dynamics, spatiotemporal ordering in synthetic
bacteria, and foraging ants.

(3) Social Decision-Making Most normative models of decision-making apply to individuals in
isolation. While they successfully describe decision-making in a laboratory setting, they fail to
apply to the real world, where decisions are made by incorporating other individuals’ behaviors.
I have generalized well-established Bayesian models of individual decision-making to describe so-
cial decision-making. I have developed models that reveal the effect the first decision
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Social Decision Making

in a group affects overall group decision accuracy, how correlated information affects
group accuracy, and how biases affect group accuracy in a group of rational, optimal
observers.

Though my research interests are quite diverse in scope, they are unified by the main research
questions that underlie them: how do actions and interactions at the individual level affect macro-
scopic behavior? What effect does noise impart upon the system?

In the following I provide details of my most substantive projects pertaining to each topic de-
scribed above.

1. BIOMOLECULAR FEEDBACK SYSTEMS

Background. Biomolecular feedback systems are biological networks consisting of positive or
negative feedback [23]. Positive feedback describes a process or reaction whose output amplifies
the process. Negative feedback describes a process where the output inhibits the process [23,33,59].
Such feedback loops are prominent across scales, ranging from interactions at the molecular and
genetic level through the tissue and organ level [13,37,42,43]. A formal elucidation of several
types of biomolecular feedback was first presented by John Tyson in the early 2000s [64]. Since
then, feedback systems have become a hallmark of several theoretical studies of various biological
systems.

There is a rich literature surrounding theory of bimolecular feedback systems, but most models
studied are comprised of ODEs. While significant, they do not take into consideration inherent
delays or noise. Modeling biomolecular feedback loops with DDEs or stochasticity renders more
biologically plausible outputs from models. In the following, I describe some recent projects in this
capacity.

1.1. Stochastic Delays in Delayed Negative Feedback. Delayed negative feedback is a paradig-
matic BFS whose signature temporal dynamic is oscillations [33,41,43,59,64,70]. It describes a
process wherein the output of a reaction inhibits the reaction following a temporal delay. A simple
model of delayed negative feedback is as follows. Let y(t) be a scalar field evolving according to

dy y(t—7)"
1 LA .
(1) dt R wK"+y(t—T)”

Here, y(t) could represent the concentration of a protein that is constitutively produced at a rate I
and inhibits its own production. The first order rate constant v describes the natural degradation
rate of the substance y. The weight w to describe the strength of the autoinhibition based on
Michaelis-Menten kinetics. For sufficiently small 7, Eq. (1) exhibits a stable equilibrium. However,
for delay values past some critical value, 7., the system admits a limit cycle, having undergone a
supercritical Hopf bifurcation at 7 = 7. (see Fig. 1).
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This feature of delayed negative feedback systems is so ubiquitous that experimentalists often
immediately attribute any observed oscillations in the lab to it. However, intracellular protein
dynamics are subject to noisy, heterogeneous environments, so investigating how noise affects such
oscillatory dynamics is necessary [16].

How to incorporate noise to describe intracel-
lular processes is an open question [16, 36, 63]. 8-

Here, we take 7 to be time-dependent and to

evolve according to a continuous time Markov or
chain on a finite discrete set, 7 € {71, 72, ..., TN } 4t
with NV € N. The model therefore couples ,|

Eq. (1) with a master equation for Q(7;,t), the shorter 7 (pre-Hopf)

probability that 7 = 7; at time ¢: 0% 10 20 30 20 20
t
dQ . : . —
(2) %(7’1, t) = Z W;iQ(7j,t) — WijQ(7i,t),  Figure 1. 7-dependent supercritical Hopf bifurcation
j=1 in Eq. (1).

where W;; denotes the propensity of the tran-

sition 7; — 7; and W;; = 0. Equations (1) and

(2) together form a so-called stochastic hybrid system—a system wherein the state of the system
evolves stochastically, but within each state the system evolves deterministically [15].

We found that if the transitions between states occurred fast enough, oscillations disappeared
from the dynamics of Eq. (1), even if each 7; > 7.. To understand why, we invoked the van
Kampen [65] and quasi steady state [16] approximations upon Egs. (1) and (2) to compute the
effective equation governing the dynamics. In the case N = 2, we found that effective equation was

dyeff o ﬂ WYeff (t - Tl)n o WYeff (t - ,7_2)71
(3) _I_’erff_ - o - ot
dt B+ a K™+ yog(t — 1) B+ a K"+ yeg(t — 72)

Surprisingly, the effective equation did not in-
clude a single effective delay, but rather incor-
5 porated the effects of all the delays simultane-
ously via a linear combination of the feedback
functions. Each feedback function was weighted

4.5
max |S(o)|
[0)

3.0 N by the stationary measure of the Markov chain.
The equilibrium behavior of Eq. (3) is sub-

s 3 stantially different than Eq. (1). In Figure 2,
2} we show the bifurcation structure of Eq. (3) by

computing the spectrogram of the solutions for

0 2 sampled pairs of delays. We see a substantial

region past 7. in the two-delay case where os-
cillations are not observed.
P S N........ The mathematical novelty of this work was
iyt tont vty s shown the computation of the effective multi delay
1 2 3 4 5 . o1 . .
7 equation in the fast switching limit, providing
further mechanistic justification for delay distri-
Figure 2. Bifurcation structure of Eq. (3). butions commonly used in gene network mod-
els. Biologically, it is fascinating that noise
undoes a common feature of delayed negative
feedback—namely oscillations. How the effects of delays in the delay interact with other sources of
noise to impact dynamics is an intriguing area of potential future work.
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1.2. Oscillations in Delayed Positive Feedback Systems. Positive feedback is ubiquitous in
biological systems and serves to produce switch-like responses to input. This feedback often results
in bistability, in which there are two stable equilibrium states that the system can be in, depending
on its starting conditions. Classic examples involving two agents are the toggle switch [29], in
which one agent is activated and the other inactivated, and the one-way switch [8] in with either
both agents are activated or both inactivated. In neither case are oscillations in activity levels
expected. Indeed, the whole point of the positive feedback is to make the system regenerative, so
input produces either a large response or no response at all.

We recently discovered that positive feedback systems can exhibit oscillatory behavior [55]. If
explicit temporal delay is taken into consideration, oscillations may appear. Importantly, the
oscillations are not an asymptotic state—that is, there is no limit cycle. Rather, the oscillations
are a long-lasting transient, often persisting for several periods, before the dynamics contract to
one of the bistable equilibria. We will show this with a simple model of the toggle switch, with
explicit temporal delay included. Let z(t) and y(t) be scalar fields evolving according to

T T T on Y

) dt 1+y(t—7)" v dt  1+ax(t—71)"

where « represents the maximal production rate of z and y and n > 0 is the Hill coefficient
characterizing the interaction. Here, x and y could represent the concentrations of enzymes that
inhibit each other, such as Cdc2-Cyclin B and Weel in the cell cycle [5,64]. Though Eq. (4)
describes two species inhibiting one another, each species provides positive feedback onto itself by
deactivating its repressor. Thus the net effect of x on & and y on y is positive feedback.

dx « dy Q@

A B C

0 10 20 30 40 50
oscillation number

Figure 3. The delayed toggle switch. (A) Schematic. (B) Projection of phase space onto
two dimensions. Blue and red curves are solutions to Eq. (4) demonstrating oscillatory
dynamics on either side of the seperatrix. Black curves are solutions to the corresponding
ODE system, showing how much information is missed by it. Dashed line is the seperatrix,
and for this system is the line y = z.

For n > 2, Eq. (4) is bistable [2] (see Fig. 3B), with the seperatrix being the stable manifold
of the saddle point between the two stable equilibria. In general, determining the stable manifold
of an infinite-dimensional system is difficult, but for Eq. (4), the projection of the stable manifold
onto the zy-plane is the line y = x [9] (Fig. 3B dashed line). Along this invariant manifold, Eq. (4)
reduces to the single equation

d
(5) e
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which is a model of delayed negative feedback, meaning for sufficiently large 7 values, the system
admits a persistent oscillation via a supercritical Hopf bifurcation. Importantly, only along the
stable manifold does the persistent oscillation exist. Moving slightly off the stable manifold im-
mediately renders the oscillation a transient. However, they last for many cycles (see Fig. 3C)
and they resemble the oscillation along the stable manifold. As such, we call these long-lasting
transients remnants of the delayed negative feedback oscillator.

The duration of the
transient depends on

the value of 7 and the A B
distance, A, from the 250, 100, o
stable manifold. No- 2 200 o 80l e
tably, the number of S .
. . . ©
oscillations increases su- 5 150 . 60 o
(72
erlinearly as 7 is in- o °
p Y 5 100! 40/ o
creased and decreases 3 o ..
as the distance of E 50 . 20| S,
the initial data from = oo sese® . A 7 . - » f"'.‘"u
the stable manifold in- 2 3 4 5 6 7 8 0 05 1 15 2 25 3 35
creases. T A

We examined var-
ious delayed positive
feedback systems, and
the properties that hold for the toggle switch appear to hold in general. That is, long-lasting
oscillations exist in the phase space of delayed positive feedback systems. They are driven by a
persistent oscillation that exists along an invariant manifold of the phase space.

Though the oscillations are transient, they could be sufficiently long-lasting so as to outlive
the species or cell within which they occur. This result fundamentally challenges current
understanding of mechanisms driving biological oscillations. Positive feedback loops are
designed to resist oscillating. Protein oscillations are abundant in biological systems [17,35,49]. It
is unlikely that all of them are driven by delayed negative feedback. The implication of our work is
that oscillations observed in the lab may be driven by positive feedback, which is unprecedented.
Oscillations observed in the experimental lab are often attributed to delayed negative feedback.
Our results here argue that that assumption could prevent investigation into the true mechanism
that may underlie biological oscillations in specific cases.

Figure 4. Duration of transient oscillations with respect to 7 and A.

1.3. Further Reading.

(1) B. R. Karamched and C. E. Miles. Stochastic Switching of Delayed Feedback Sup-
presses Oscillations in Genetic Regulatory Systems. Journal of Royal Society Interface. 20:
20230059 (2023) (summarized above)

(2) C.J. Ryzowicz, R. Bertram, B. R. Karamched. Oscillations in Delayed Positive Feedback
Systems. Physical Chemistry Chemical Physics. 26, 24861-24869. (2024) (summarized
above)

(3) R. Godin, B. R. Karamched, S. D. Ryan. The Space Between Us: Modeling Spatial
Heterogeneity in Synthetic Microbial Consortia Dynamics. Biophysical Reports. 100085.
(2022)

(4) F. Bai, R. Bertram, and B. R. Karamched. A Mathematical Study of the Efficacy
of Possible Negative Feedback Pathways Involved in Neuronal Polarization. Journal of
Theoretical Biology. 111561. (2023)
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(5) B. R. Karamched, G. Hripcsak, R. L. Leibel, D. Albers, and W. Ott. Delay-Induced
Uncertainty in the Glucose-Insulin System: Pathogenicity for Obesity and Type-2 Diabetes
Mellitus. Frontiers in Physiology. 13:936101 (2022)

(6) B. R. Karamched, G. Hripcsak, D. J. Albers, and W. Ott. Delay-Induced Uncertainty
in a Paradigmatic Glucose-Insulin Model. Chaos 31 023142. (2021)

2. LATTICE MODELS OF SPATIAL SYSTEMS

Background. Lattice models have a rich history in biological modeling. They provide a valu-
able framework for modeling complex spatiotemporal dynamics in biological tissues. They are an
alternative to agent-based models and PDEs for modeling emergent spatiotemporal patterning.
Agent-based models provide realistic models of biological tissues and populations, but are often
intractable and computationally expensive. Partial differential equation models offer scope for
analysis, but they often coarse grain dynamics so that an individual’s impact on the population
is unclear. Lattice models capture individual properties at a high level but nevertheless sacrifice
some fidelity to reality for the sake of analytical tractability. Often times, one can invoke a mean
field approximation to derive an effective equation to describe overall dynamics of the microscopic
configurations of the lattice.

Lattice models have been used to model protein folding [58], cancer initiation and progres-
sion [45, 46], and motor protein transport through a cell [12,14,47], amongst numerous other
applications [10,21]. Here I will describe in detail lattice models I developed for understanding
(1) emergent spatiotemporal ordering in synthetic microbial consortia and (2) trail formation in
foraging ants.

2.1. Cell Alignment in Extended Microfluidic Traps. A central goal of synthetic biology
is the construction of practical, engineered genetic circuits for medical and industrial applica-
tions [8,19]. Critical to this goal is the elucidation of the fundamental mechanisms that govern
gene regulation at all levels.

Populations of F.
coli cells trapped in
microfluidic devices can
be used to study ge-
netic signaling networks
and understand how
information is commu-
nicated between ge-
netic modules distributed
across two or more

a

strains of bacteria. In _;;rv- 1L

extended microfluidic .‘E‘-___.. I ==l

traps, populations are 7y | = .; -

not well- mixed; there- =i (= ||
=34

fore, spatiotemporal pat-
terning of distinct bac-

terial strains plays an Figure 5. (a) A monolayer of E. Coli in an open microfluidic trap with cells
important role in inter-  aligned orthogonally to the trap’s long side. Colors represent distinct strains. (b)
strain communication [1]In our spatial Moran model cell growth is directional and location dependent: The
For example, multi- outlined vertical cell can grow only upward or downward at a location-dependent
strain consortia of E. rate. The red arrow indicates growth direction, so the cell above will be replaced
coli in open, rectangu- Dy a descendant of the outlined cell. We model single strain populations, but use
lar microfluidic traps the same color for mother and daughter cells for visualization.
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form single-strain bands
orthogonal to the long side of the trap (Fig. 5) [1]. The distribution of such bands can affect the
efficiency of communication between distinct strains of bacteria due to the limited diffusivity of quo-
rum sensing molecules. Understanding the mechanisms underlying this emergent order is therefore
important for engineering synthetic gene circuits with desired properties.

We developed an analytically tractable spatial Moran model (SMM) that captures essential
features of the dynamics of growing populations of E. coli cells and provides insight into the
emergence of these single-strain bands [38]. These capsule-shaped bacterial cells tend to grow more
slowly in crowded environments; that is, cells in the center of a trap grow slower than cells along
the boundary [20,68]. We model the microfluidic trap as an M x N lattice and the cells as oriented
particles on the lattice (Fig. 5). The cells are in one of two orientations: horizontal or vertical.
These cells grow along the major axis of their bodies asymmetrically. We assume a cell’s growth
rate in a given direction is a monotonically decreasing function of the distance the cell is from the
boundary in that direction. The SMM shows that provided this growth-rate dampening due to
crowding, denoted by the parameter k, is sufficiently strong, cells align orthogonally to the long
side of the trap, as seen in experiments. However, if k£ decreases below a critical value x*, a phase
transition occurs and cells align parallel to the long side of the trap.

The transitions between various microscopic configurations of the lattice are described by a
master equation [16,67] for the probability p;;(t) that the ijth site of the lattice is occupied by
a vertical cell. Invoking a mean field approximation and averaging the resulting equation over all
of space [62] shows that the fraction of cells vertical at time ¢ in the lattice, n(t), obeys a logistic
equation

dn - 1 5 1
(6) O =W M N = m) (e, M) =2 (500 D)~ Bell = ).
Here, 0, and h, are effective growth rates in the vertical and horizontal directions, respectively,
and emerge from the mean field. The directional growth rates decrease exponentially as a cell’s
distance to the boundary in that direction grows. The logistic growth rate p conveys that whether
all cells are vertical or horizontal at equilibrium is determined by a competition between x and the
boundaries of the domain.

Setting © = 0 allows for
the calculation of k* for
any lattice with dimensions
sM x sN:

K/*

2
~ MNs?

We computed x* for sev-
eral different growth func-
tions (Fig. 6a) and sev- — CapiE path \
eral different lattice dimen- os « T imodar o pjngnﬁal .."“ﬁ\
sions (Fig. 6b), and the 0 , 2 55 1 ’
match is remarkable. The time logyo 5
lattice . mode.I asserts that Figure 6. How the mean field compares with stochastic simulations of the
cell orientation occurs via ¢1] model.

a competition between how
strongly a cell feels its surrounding neighbors versus how far it is from the boundary that will eject
it from the microfluidic trap.

We further used the same Moran model to demonstrate that in multi-strain microbial pop-
ulations, rounder cells will flush more rod-like cells out of the microfluidic trap [69]. We also

demonstrated by incorporating quorum sensing dynamics that experimentalists can dynamically
7
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alter the strain ratio in a microfluidic trap. This is significant for synthetic biologists as they try
to engineer microbial systems that can coordinate activity across large spatial domains.

2.2. Trail Formation in Foraging Ants. Foraging for resources is an essential process for the
daily life of an ant colony. What makes this process so fascinating is the self-organization of ants
into trails using chemical pheromone in the absence of direct communication. In the absence of
an external motivation or central control center, ants can perform complex sets of tasks [25, 26]
and exhibit macroscopic emergent behavior [22,24]. This makes them an ideal model organism for
studying the physical origins of self-organizing behavior, and understanding organization in ants
can unveil general principles of self-organization.

In order to find food for survival, ant colonies send foragers away from the nest executing a
random search process. All foragers effectively perform Brownian motion until food is found [18,52].
Once an ant finds food, it collects a morsel and makes a beeline to the nest, secreting pheromone
along the way [22,27,28,30,31,51,54,61]. The pheromone signals to the other ants of where the
food is, and trail formation begins. We developed a lattice model to describe this phenomenon.

We model the general terrain as an M x N C N? lattice and the ants as n € N particles hopping
along the lattice nodes [34]. We assume that the timescale of trail formation is small enough
(approximately 4-8 hours from biological observation of army ants E. burchellii [56,57]) that we
ignore births and death in the colony. There is no direct communication between individuals,
but rather a response to a chemical pheromone gradient if present represents the only means of
(indirect) communication. We designate a single site as the nest, x¢. Initially, all n ants occupy
that designated site. To understand how the location of food sources relative to the ant nest affects
spatiotemporal structure of ant motion, we also randomly designate ' € N sites as food sources.
We assume the colony of ants are particles represented by a set of points {x;}, i = 1,...,n, where
x; € [1,M] x [1,N]. Each point can be thought of as the location of the center of mass for an
individual ant. We assume the boundaries are reflecting for ants to maintain a fixed population.

In the absence of pheromone, foragers perform a random walk on the lattice, moving with equal
probability to any site in its Moore neighborhood on a given time step (see Fig. 7. Once an ant finds
food, it makes a beeline to the nest and secretes pheromone along the way. Pheromone deposition
is modeled by a two-dimensional reaction-diffusion process for the chemical concentration c(x,t)
first introduced in [54]:

9 K T (e —x® 2
@ O DAyetre=Y ) Ac (0=1) 55—y 0.

k=1j=1

() i5 the location of the K food source(s), J is the number of

food-carrying ants, A;; is the discrete Laplacian, D is the diffusion
. . . coeflicient controlling the rate at which the pheromone spreads, and
v is the evaporation coefficient that ensures an exponential decay

2
- ()

. of the pheromone in time. The coefficient Ae rep-

resents the amount of pheromone deposited at time ¢ and decays
as a food-carrying ant moves away from the food source. This de-
crease is needed to ensure that the proper gradient forms due to the
. ‘ . competition with diffusion. Eq. (7) is coupled with homogeneous
Fourier-type boundary conditions.

With pheromone present, foraging ants perform a biased random
walk, where they will preferentially move to the site in their Moore
neighborhood yielding the greatest increase in local pheromone con-
centration. They maintain a non-zero probability of going into any
other site. Simulations show that in environments with a single

8
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Figure 8. Snapshots showing emergence of trails in an environment with two food sources.
Black circles are the nest and purple circles are food sources.

food source, ants will establish trails connecting the nest to the food source. There are several
models that do this. The main contribution of our model is that it allows for simul-
taneous trail formation to multiple food sources in environments with multiple food
sources. (see Fig. 8) Other trail formation models have failed to do this consistently, which is
problematic because simultaneous trails are established by ant colonies [3,4,22,53]. The reason our
model succeeded where others failed was we allowed pheromone-sensing foragers to have a non-zero
probability of moving away from the pheromone. This sufficed to allow for robust multiple trail
formation.

Our model predicts that if food sources are equidistant from the nest, ants will form longstanding
trails to both food sources. That is, simultaneous trails will be the stable equilibrium of our
model. If food sources are anisometric relative to the nest, simultaneous trails will form, but only
transiently. All ants eventually converge to the trail connecting to the closer food source.

We were able to write down a master equation for the transitions between the microscopic
configurations of the lattice and invoke a mean-field approximation and a continuum limit to
derive a set of PDEs for foragers. One key contribution stemming from this derivation was that we
performed a linear stability analysis and computed dispersion curves [50] to show that the presence
of food was the cause of trail formation and that its existence was necessary but not sufficient.
Parameters had to be tuned appropriately to ensure trail formation.

2.3. Further Reading.

(1) B. R. Karamched, W. Ott, I. Timofeyev, M. R. Bennett, and K. Josic. Moran Model
of Spatial Alignment in Microbial Colonies. Physica D: Nonlinear Phenomena. 395 1-6
(2020). (summarized above)

(2) S. Hartman, S. D. Ryan, and B. R. Karamched. Walk this Way: Modeling Foraging Ant
Dynamics in Multiple Food Source Environments. Journal of Mathematical Biology. 89,41
(2024) (summarized above)
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(3) F. Bai, R. Bertram, and B. R. Karamched. A Closed-Loop Multi-Scale Model for Intrin-
sic Frequency-Dependent Regulation of Axonal Growth. Mathematical Biosciences. 344:
108768 (2022)

(4) I. Kemler, B. R. Karamched, C. Neuhauser, D. Dingli. Quantitative Imaging and Dy-
namics of Tumor Therapy with Viruses. The FEBS Journal. (2021)

(5) J. J. Winkle, B. R. Karamched, M. R. Bennett, W. Ott, and K. Josic. Emergent Spa-
tiotemporal Population Dynamics with Cell-Length Control of Synthetic Microbial Consor-
tia. PLoS Comput Biol. 17(9): €1009381. (2021)

3. SocCIAL DECISION-MAKING

Background. Evidence accumulation models describe how different organisms integrate informa-
tion to make choices. The problem of a single agent integrating evidence to decide between two
options—with only one correct—has been thoroughly studied in this capacity. In the simplest set-
ting, a Bayesian observer makes a sequence of conditionally independent noisy observations of an
environment and computes the probability that the environment is in one of two states. Once their
belief crosses one of two thresholds, signifying they accumulated sufficient evidence, they make the
analogous decision. The evidence accumulation and decision-making processes can be formulated
as a drift-diffusion SDE on a bounded, symmetric domain with absorbing boundaries [11].

The principle issue with current models of evidence accumulation and decision-making is that
they describe an observer in isolation, whereas decisions are often made in groups. Stock traders,
while not privy to all of their competitor’s information, can still observe each other’s decisions. It is
thus natural to ask how an observer should combine private measurements with social information
optimally to make decisions. In the following I provide details of some of my most substantive
recent work in this field.

3.1. Heterogeneity Improves Speed and Accuracy of Social Networks. Consider an all-to-
all network, or clique, of agents, each deciding between two options. Like day-traders, or strangers
in a market, agents make private observations and gather social evidence by observing the choices of
all other agents. They do not share private information but know the statistics of the observations
each agent makes. A decision cannot be undone.

We assume N agents accumulate noisy private observations and optimally combine them with
information obtained from observing the decisions of their neighbors to choose between two hy-
potheses, H' or H~ [39,40]. Either hypothesis is a priori equally likely to be correct. Each agent,

i, makes decisions based on their belief, y;(t), which equals the log-likelihood ratio (LLR) between

the hypotheses given all available evidence '. After a sequence of private observations, fyz, the

belief is y;(t) = 10g[P(H+|§§zg)/IP)(H_|§§li)] If private observations are rapid and conditionally
uncorrelated in time and between agents, beliefs evolve according to

(8) dyl = tadt + Vv QOédWi,

where the sign of the drift equals that of the correct hypotheses, and W;(t) are independent,
standard Wiener processes [11,66]. Each observer starts with no evidence, so y;(0) = 0. We further
assume that H™ is correct and o = 1.

Each agent, i, sets a threshold, 0;, and chooses H™ (H ™) at time T; if y;(T}) > 0; (y:(T;) < —6;),
and y;(t) € (—6;,6;) for 0 <t < T;. All other agents observe a decider’s choice, but may not know
their threshold. We consider omniscient agents who know each other’s thresholds.

Without loss of generality, we assume the belief of agent i = 1 is the first to reach threshold at
time ¢ = 7. Until this decision, beliefs of all agents, y;(¢) with i = 2,..., N, evolve independently
according to Eq. (8). Upon observing the first decision, omniscient agents update their belief by

LOften the belief refers to the posterior probability of the state. The two definitions are closely related as p(H_|¢) =

1/(1+ exp(y)). 0
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the evidence independently accumulated by the first decider, y;(T) — v;(T) &+ 61 [?]. Observing
a positive (H1) first decision causes any belief that satisfies y;(T~) € [6; — 61,6;), to cross the
positive threshold, 6;, evoking a positive decision by agent i. Thus, a wave of a1 agreeing agents
follows the first choice. Each of the remaining N —a; —1 undecided agents then obtains information
by observing who followed the first decision and who remained undecided. How do the undecided
agents make use of this newly revealed information?

For homogeneous populations (6; = ) and sufficiently large N, we find that

N -1 0

(9) Blarlyn(T) = #6] ~ = — (14 o ——).

Thus, if the first decider chooses correctly (incorrectly) slightly more (less) than half the population
will agree with the first decision. The remaining undecided agents then reveal that their respective
private information had them leaning the opposite way before observing the first decision, and this
information causes all remaining undecided agents to update their belief by 27(?1]1\7 ~» Which is greater
than 20 for sufficiently large N. Thus, all agents will make a decision upon observing the first
decision. If the first decision is correct, everyone agrees with them and everyone chooses correctly.
If the first decision is incorrect, then about half the clique chooses correctly.

We model heterogeneous populations with a dichotomous population. That is, we take 6; €
{Omin, Omax } With Opnin < Omax. The parameter v represents the fraction of agents with threshold
Omin- Surprisingly, we find that such dichotomous populations perform better than homogeneous
populations provided « is tuned optimally. The basic idea is as follows: Agents with Oy, as their
threshold decide hastily leading only other hasty agents to make a potentially ill-advised decision,

with Ela;] ~ 71\72—1 (1 + 7 470:11;1“7 N). More deliberate agents can weigh this information correctly and

thereby make a correct decision.
A dichotomous clique
performs optimally for a

(a) .'. : ® .\\ (b) . ..’.. © / particular value of v. The
/. ® 00‘0... \ / :/ }..0;\.\ //. basic idea is as follows. If
/ “: '/» .0® ¢\ /g /% : o e ® /00 v is small, then not enough
L.. .: fo::/‘ oo | 0‘1\’.‘ o ®0o®®| | o0® information is obtained by
\ Yeg0 s %% \@ \ele®see/ o/ | bserving the first £
\o o 00 ® o ..\?. o0 0% %o observing the first wave o

oo .0 ...y \\‘ oo 00 o decisions (Fig. 9a). The
Nyl L, o @ d vast majority of remaining
agents are undecided and

: ‘c‘g:'r‘ziitded ® agent Wfth threshold Bimax the time required for every-

® incorrect * agent with threshold &min one to make a decision is

long. On the other hand,
if v is too large, then all de-
liberate agents choose cor-
rectly after observing the
first decision (Fig. 9b). But too many agents are sacrificed to the wrong decision for this result.
These two effects counteract at a critical v value (Fig. 9¢c). Thus, not only do heterogeneous
cliques decide more accurately, they also decide more quickly due to the hasty initial
decision!

This result holds for more general 6 distributions. For example, taking 6 ~ U [Onyin, Omax] yields
similar results (see Fig. 10). Due to the relevance of this work, particularly during election years,
we received significant media attention.

Figure 9. Graphical description of optimal ~ value.

3.2. Further Reading.
11
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Figure 10. Simulations showing heterogeneous cliques outperforming homogeneous cliques
in accuracy and time.

(1) B. R. Karamched, S. Stolarczyk, Z. P. Kilpatrick, and K. Josic. Bayesian Evidence
Accumulation on Social Networks. STADS 19 (3) 1884-1919 (2020). (summarized above)

(2) B. R. Karamched, M. Stickler, B. Lindner, Z. P. Kilpatrick, W. Ott, and K. Josic.
Heterogeneity Improves Speed and Accuracy in Social Networks. Physical Review Letters
125, 218302 (2020)

(3) M. Stickler, W. Ott, Z. P. Kilpatrick, K. Josic, and B. R. Karamched. Impact of Corre-
lated Information on Pioneering Decisions. Physical Review Research. 5, 033020. (2023)

(4) S. Linn, S. D. Lawley, B. R. Karamched, Z. P. Kilpatrick, K. Josic. Fast decisions reflect
biases, slow decisions do not. Physical Review E 110, 024305 (2024).

4. OTHER WORK

Here I briefly summarize other work I’ve done in each of the subdisciplines.

4.1. Biomolecular Feedback Systems. Since 2021, I have modeled biological processes involving
biomolecular feedback and developed theory regarding it. In collaboration with Kresimir Josi¢ and
Will Ott, I developed a stochastic model of synthetic E. coli cells in spatially extended domains
and showed that if two types of cells communicate via positive feedback, they dynamically alter
their spatiotemporal patterns [69]. Building on this, with Shawn Ryan, I developed a PDE-DDE
model demonstrating that synchronization of oscillations in protein concentrations in synthetic F.
coli across a large spatial domain was facilitated by positive feedback loops coupled with negative
feedback loops. The delay here captured the time for protein production and diffusion across the
domain [32]. I developed a model of neuronal polarization—the process by which symmetrically
arranged protrusions from the unpolarized neuron suddenly break symmetry and choose exactly
one of their protrusions to be the axon (electrical signal propagator) and the rest to be dendrites
(signal receivers) [7]. Analysis involved understanding how additive noise facilitated transfer of a
particle between potential wells in a positive feedback system. Our model was the first rigorous
theoretical formulation of the neuron polarization problem. These were done in collaboration with
Richard Bertram and my first Ph. D. student, Fan Bai. Furthermore, with Will Ott and Dave
Albers, I investigated the role delay plays in onset of chaos in a paradigmatic glucose-insulin model.
We followed up by investigating some clinical implications [37,42]

4.2. Lattice Models. With my student Fan Bai and Richard Bertram, I developed detailed bio-

physical models of motor transport to bring to light how interactions of the motors themselves at

the subneuronal level affect length homeostasis in the neurons [6]. The motor interactions were cap-

tured via nonlinear PDEs derived from a Totally Asymmetric Simple Exclusion Process (TASEP).
12
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Our model coincided with two previously published experimental reports and predicted that a traf-
fic jam of motors would cause neuronal length to grow. With David Dingli and Claudia Neuhauser,
I developed a lattice model to investigate spatial dynamics of oncolytic virotherapy—a relatively
novel therapeutic for treating cancerous tumors [44]. With Kresimir Josi¢ and Will Ott, I devised
a lattice model to demonstrate how multi-strain microbial consortia with distinct shapes for each
strain can be used to control spatiotemporal patterns [69].

4.3. Social Decision-Making. In follow up papers from what is described above, we developed
a rigorous model of decision-making when information is correlated, which is more pertinent to
real world settings [60]. Thereafter, we developed our models for including initial bias from the
observers [48]. Each model has been an incremental improvement on classical evidence accumulation
models, with each becoming more pertinent to real life. These models allow for comparison with
data from social network sites and can divulge where humans deviate from optimality. This work
was done with Zachary Kilpatrick, Kresimir Josi¢, and Will Ott.
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