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We introduce a tractable stochastic spatial Moran model to explain experimentally-observed pat-
terns of rod-shaped bacteria growing in rectangular microfluidic traps. Our model shows that spatial
patterns can arise as a result of a tug-of-war between boundary effects and modulations of growth
rate due to cell-cell interactions. Cells align parallel to the long side of the trap when boundary
effects dominate. However, when the magnitude of cell-cell interactions exceeds a critical value,
cells align orthogonally to the trap’s long side. Our model is analytically tractable, and completely
solvable under a mean-field approximation. This allows us to elucidate the mechanisms that govern
the formation of population-level patterns. The model can be easily extended to examine various
types of interactions that can shape the collective behavior in bacterial populations.

Patterns emerge in collectives of interacting biological
agents even in the absence of leaders or global signals.
Collective motions of birds and fish arise from simple
interactions between neighbors [1, 2], gliding M. xanthus
form coherently moving clusters via steric interference [3],
and molecular motors self-organize to transport intracel-
lular cargo [4]. Yet how the actions of myopic agents
drive collective behavior is not fully understood.

Physical interactions between neighbors in microbial
colonies also lead to emergent patterns [5, 6]. For in-
stance, multi-strain consortia of E. coli in open, rect-
angular microfluidic traps form single-strain bands (see
Fig. 1a). Such spatial arrangements are stable and help
maintain consistent dynamics in bacterial strains inter-
acting via extracellular signals [7, 8]. Uncovering how
local interactions drive population–level patterns is thus
important for understanding emergent order in bacterial
communities and engineering synthetic microbial collec-
tives with desired properties [9–11].

Recent experiments and agent-based simulations sug-
gest that environmental geometry and physical interac-
tions between microbes influence observed global struc-
tures [12–15]. Capsule-shaped E. coli grow along the ma-
jor axis of their bodies, preferring directions with min-
imal physical resistance, i.e. where the number of cells
requiring displacement is smallest [6, 12, 16]. Moreover,
in dense populations, cell growth is also determined by
the geometry of the confining space [12, 14].

We provide a tractable mathematical model that shows
how such directional, cell-interaction-dependent growth
drives population–level patterns. We model cells as
horizontally- or vertically–oriented agents on a lattice
representing a microfluidic trap (see Fig. 1b). A cell’s
orientation determines the directions in which it divides,
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while its location determines its growth rate. As physical
growth requires the displacement of fewer cells towards
the nearer boundary, we assume that division along this
direction is more probable.

Our model shows that a transition occurs at a crit-
ical value of cell–cell interactions: When cells do not
strongly impact each other’s growth, the collective aligns
into columns parallel to the long side of a trap (see
Fig. 2b). However, if the strength of these interac-
tions is sufficiently strong, the collective aligns orthog-
onally to the trap’s long side (see Figs. 2a and 1a).
Since the latter arrangement is observed experimentally,
our model suggests that cell–cell interactions modulate
growth rates [5, 14], and drive the emergence of ordered
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FIG. 1. (Color online) (a) A monolayer of E. Coli in an open
microfluidic trap with cells aligned orthogonally to the trap’s
long side. Colors represent distinct strains. (b) In our spa-
tial Moran model cell growth is directional and location de-
pendent: The outlined vertical cell can grow only upward or
downward at a location-dependent rate. The red arrow in-
dicates growth direction, so the cell above will be replaced
by a descendant of the outlined cell. We model single strain
populations, but use the same color for mother and daughter
cells for visualization.
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states in spatially-extended populations[17].
Previous detailed models of growing bacterial colonies

provided limited insight into the mechanisms underlying
emergent structures. A growing bacterial population can
be modeled as an expanding fluid with a dynamical order
parameter reflecting cell alignment [13, 18–20]. Agent-
based models can resolve physical interactions between
cells in dense populations [15, 21, 22]. Both approaches
can reproduce spatiotemporal patterns observed in cell
collectives, but are difficult to analyze. We provide a sim-
ple, analytically tractable, and flexible alternative which
offers insights into the emergence of spatial structures.

Spatial Moran model (SMM). Our model captures
essential features of a population of rod-shaped bacteria
growing in a microfluidic trap: To grow in the direction
of the longer axis of their capsule-shaped bodies, cells
displace their neighbors. Division results in a daughter
cell approximately aligned with its parent. A cell at the
trap’s boundary can be pushed out by cells growing in
the interior, and bacteria at the boundary can produce
offspring outside the trap.

We model the rectangular microfluidic trap as an
M×N lattice filled by vertically- or horizontally–oriented
cells (see Figure 1b). Initially the lattice is full, and
cell orientation is random [23]. Cells grow at location–
dependent rates. Upon division, a cell’s offspring replaces
one of its neighbors. We denote by v±κ (i) the growth rate
of a vertical cell in the ith row toward the top (+) or
bottom (–) boundary, and h±κ (j) the growth rate of a
horizontal cell in the jth column toward the right (+) or
left (–) boundary (see Fig. 1b). The growth rate of a ver-
tical (horizontal) cell depends only on the row (column)
in which it resides.

We assume growth rates are determined by a one-
parameter function family, with κ ∈ [0,∞) characteriz-
ing the population’s impact on growth. This family can
be general, but we assume that growth rates are posi-
tive and satisfy: (1) There exists a λ ∈ (0,∞) such that
v±κ (i), h±κ (j) → λ as κ → 0 for all i, j; (2) Maximal
growth rates occur at the boundaries, v+κ (M) = v−κ (1) =
h+κ (N) = h−κ (1) = λ; (3) v±κ (i), h±κ (j) decrease monoton-
ically with distance from the boundary that maximizes
their value. Condition (1) says that cells grow uniformly
at rate λ in the absence of interactions (κ = 0). Condi-
tions (2) and (3) reflect cells’ tendency to grow toward the
nearest boundary, and growth rate dampening from cells
obstructing growth in a certain direction (see Fig. 1b).
Unless otherwise noted, we used [24]

v+κ (i) = λe(−κ(M−i)) v−κ (i) = λe(−κ(i−1)) (1a)

h+κ (j) = λe(−κ(N−j)) h−κ (j) = λe(−κ(j−1)). (1b)

Cells grow by displacing their neighbors: In a small
interval, ∆t, a vertical (horizontal) cell at the ij-th site
replaces a neighbor at (i±1)j (respectively i(j±1)) with
a copy of itself with probability v±κ (i)∆t (respectively
h±κ (j)∆t). Divisions are independent across the popula-
tion, and thus exponentially distributed. Only the di-
vision of an adjacent cell with the opposite orientation

can alter the orientation at the ij-th site. Boundaries
are absorbing, and divisions at the boundary producing
descendants outside the trap result in no changes. In
the microfluidic trap, cell growth and division physically
displace more than one cell in the direction of growth.
A model that incorporates such long-range interactions
displays similar behavior (see SI Fig. S6 [25]).

Results. To understand the impact of trap geome-
try on collective bacterial cell alignment, we simulated
the SMM using the Gillespie algorithm [26] on lattices
with different aspect ratios, Γ ≡ N/M, and different
interaction parameters, κ [27]. For κ sufficiently large,
all initial conditions converge to the equilibrium where
cells are orthogonal to the long side of the trap (see
Fig. S2; for Γ > 1, all cells vertical, for Γ < 1, all cells
horizontal). When Γ = 1, the system reaches a quasi-
equilibrium with cells orthogonal to the nearest bound-
ary (see Fig. 3). This suggests that Γ acts as a parame-
ter for a transcritical-like bifurcation at Γ = 1 where the
horizontal and vertical equilibria exchange stability. We
make this precise in the next section.

Interestingly, when κ = 0, cells orient parallel to the
long side of the trap (see Fig. 2b): When Γ > 1 (Γ <
1), the horizontal (vertical) equilibrium is stable. When
Γ = 1, symmetry again results in a saddle-like quasi-
equilibrium, with cells parallel to the nearest boundary.

Therefore, when cells divide at location-independent
rates, (κ = 0) they approach an equilibrium opposite to
that when growth is location-dependent (κ is large). We
observed the second state experimentally, suggesting that
such cell-cell interactions influence global structure. The
model also suggests that a phase transition occurs at a
critical value, κ∗.

This exchange of stability between equilibria at κ∗ re-
sults from an interplay between boundary effects and
growth rate variations. When κ = 0, all cells divide at
equal rates, except for those orthogonal to a boundary
which are as likely to have a descendant within the trap
as outside. However, more cells are likely to be orthogo-
nal to the long boundary than the short one and to have
a descendant outside the trap, so that cells parallel to the
long boundary have a higher effective growth rate, and
eventually fill the trap (see Fig. 2b). Conversely, when
κ > κ∗, cells parallel to the longer side of the trap will
have more cells obstructing them than cells parallel to the
short side. If κ is sufficiently large, the average growth
rate of cells perpendicular to the long boundary will dom-
inate, and these cells will fill the trap (see Fig. 2a). Even
when κ > κ∗, variations in growth rates across the lattice
can be small: In a 20× 10 lattice, κ∗ ∼ 10−2 (see below)
and cell growth is reduced by half at ≈ 70 cell lengths.

Cell-cell interaction kernels satisfying conditions (1)-
(3) will generally lead to the same qualitative results,
and we obtain the critical values κ∗ analytically for a
range of different functions below. As expected, κ∗ → 0
as lattice size grows, and near critical values in larger
traps growth rates have smaller spatial variations than
in smaller traps.
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FIG. 2. (Color online) Cells growing on a lattice according to a SMM. (a) Snapshots of the transient states and the all-vertical
equilibrium for for κ > κ∗. On the left, we show growth rates of vertically-oriented cells toward the upper and lower boundaries;
(b) Same as (a) but for κ < κ∗. See SI for corresponding movies.

Master equation model. To understand the dy-
namics of the SMM we develop a master equation (ME)
describing the evolution of occupation probabilities at
different lattice sites. Denote by nij ∈ {0, 1} the state
of the ij-th site at time t, so that nij = 1 ( nij = 0)
corresponds to a site occupied by a vertical (horizontal)
cell. The dynamics of the probability pij(t) of nij = 1 at
time t are characterized by the ME [28, 29],

dpij
dt

= v+κ (i− 1)p(n(i−1)j = 1, nij = 0)

+ v−κ (i+ 1)p(n(i+1)j = 1, nij = 0)

− h+κ (j − 1)p(ni(j−1) = 0, nij = 1)

− h−κ (j + 1)p(ni(j+1) = 0, nij = 1),

(2)

where p(nij , nkl) are joint occupation probabilities. The
first two terms in Eq. (2) correspond to horizontal-to-
vertical cell transitions through displacement by a de-
scendant from a cell either above or below. The second
two terms describe the opposite transition. Equations at
boundary sites are obtained by setting to zero the prob-
ability that a site outside the lattice is occupied, e.g.
p(ni(N+1) = 0, nij = 1) = p(n0j = 1, nij = 0) = 0.

Eq. (2) is related to the Ising model as both de-
scribe the evolution of alignment probabilities on a lat-
tice. However, the location-dependent growth rates lead
to different interactions, and no external field influences
cell alignment [29] in our model.

This ME describes a nontrivial many-body problem
as the evolution of pij depends on the joint probabili-
ties p(nij , nkl). The dynamics of the latter depend on
the joint occupation probabilities at three or more sites
leading to an infinite hierarchy of equations. Following
a common approach [28, 29], we assume that the occu-
pation states at neighboring sites are independent, that
is, p(nij = 1, nkl = 1) = pijpkl, yielding a closed sys-
tem of ODEs for pij (see Eq. (S2)). The evolution of
Eq. (2) and its approximation are both consistent with
direct SMM simulations: When κ > κ∗ we observe an all-
vertical state (pij ≈ 1) when Γ > 1, and an all-horizontal
state (pij ≈ 0) when Γ < 1. When Γ = 1 orientations
tend to be perpendicular to the closer boundary, and

pij ≈ 0.5 along the diagonals of the square lattice. In
Fig. 3c we show the steady-state distribution of cell ori-
entations when κ > κ∗ and κ < κ∗ for Γ = 1 (See Fig. S2
for equilibria at different parameter values).

As in the SMM, equilibrium stability depends on Γ and
κ. Fig. 3a shows the largest real parts of the eigenvalues
of the Jacobian of the closed ME at equilibria pij = 1 and
pij = 0 for fixed κ > κ∗ as a function of Γ. For Γ > 1,
the all-vertical state is stable. As Γ crosses unity from
above, the largest eigenvalue becomes positive, and the
all-vertical state becomes unstable. The all-horizontal
state exhibits the opposite behavior. For smaller lattices
a saddle-like state (See Fig. 3c and Fig. S2) is stable over
a range of Γ (inset in Fig. 3a). Although discrete, Γ thus
behaves as a parameter for a transcritical bifurcation in
which the all-vertical and all-horizontal states exchange
stability with a saddle state.

Consistent with the SMM, when κ < κ∗, the equilib-
ria in the regimes Γ < 1, and Γ > 1 are opposite those
when κ > κ∗ (See Fig. S2). Hence, κ acts as a second
bifurcation parameter for the ME with the all-horizontal
and all-vertical equilibria exchanging stability at critical
value κ∗: When Γ > 1, and κ < κ∗ the stable equilibrium
is predominantly horizontal. As κ grows, this equilibrium
transitions to being predominantly vertical, and for some
κ > κ∗, it destabilizes and the stable equilibrium be-
comes all-vertical (see Figs. 3b and 4). For brevity, we
refer to equilibria only as all-horizontal or all-vertical.

The transition in stability near κ = κ∗ and Γ = 1 is
driven by the same mechanisms as in the SMM: At Γ = 1
the aspect ratio of the trap changes, while for κ > κ∗

location-dependent dampening of growth overcomes the
loss of cells across the longer trap boundary.

Interestingly, solutions exhibit boundary layers for κ <
κ∗ (see Fig. S2). This suggests a breakdown in the closed
ME near the trap’s edges. Indeed, Monte Carlo simula-
tions of the SMM show high correlations between ad-
jacent states near the short trap edge when κ < κ∗.
However, these correlations decay rapidly away from the
boundaries (see Fig. S3).

Mean field reduction. We next derive a simple mean
field (MF) model that captures the behavior of the SMM,
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FIG. 3. (Color online) (a) Eigenvalue plots as described in
text for different system sizes (M = 10, dashed, M = 100,
solid). The two states lose stability at different points for
small systems, so that for a range of Γ neither is stable. In the
large system the equilibria lose stability nearly simultaneously
at Γ = 1. (b) The fraction of vertical cells at equilibrium
exhibits a sharp transition near κ∗ for fixed Γ > 1 (Eq. (3),
blue, and closed ME, Eq. (2), green). A secondary bifurcation
in the all-vertical state occurs at κ > κ∗ (solid to dashed green
line transition) (c) Steady states of the closed ME when Γ = 1
for κ > κ∗ and κ < κ∗.

and allows us to compute κ∗ analytically. To do so we
average occupation states over the lattice. Let

v̄κ ≡
1

M

M∑
i=1

v+κ (i), h̄κ ≡
1

N

N∑
j=1

h+κ (j), n ≡ 1

MN

∑
i,j

pij ,

so that n(t) is the fraction of vertical cells at time t, and
v̄κ, h̄κ are the average growth rates in the vertical, and
horizontal directions, respectively. By symmetry, v−κ ,
and h−κ also average to v̄κ, and h̄κ. Averaging the closed
ME over all i, j shows that n obeys a logistic equation,

dn

dt
= 2
(
v̄κ
(
1− 1

M

)
− h̄κ

(
1− 1

N

))
︸ ︷︷ ︸

µ(κ,M,N)

n(1− n), (3)

and n(t) = exp(µ(κ,M,N)t)/(1+exp(µ(κ,M,N)t). This
agrees with the averaged solutions to Eq. (2), and SMM
simulations averaged over realizations (see Fig. 4a).

The effective growth rate of the vertical cell fraction is
thus µ(κ,M,N). When κ = 0, µ(0,M,N) = 2λ(1/N −
1/M), and the effective growth rate is completely deter-
mined by boundary lengths. Cell-cell interactions modu-
late the effective growth rate as κ is increased. However,
the system always has two equilibria corresponding to an

all-vertical (n = 1) and all-horizontal (n = 0) orientation
which exchange stability at N = M(Γ = 1).

The two equilibria also exchange stability at a crit-
ical level of cell-cell interactions, κ∗. For fixed M,N ,
this transition point satisfies µ(κ∗,M,N) = 0. For
0 < κ < κ∗, and N < M (N > M) the state n = 1
(n = 0) is stable. When κ > κ∗ the difference in aver-
age growth rates, v̄κ, h̄κ, dominates boundary effects, and
the system reaches the opposite equilibrium. Unlike the
ME, the MF model predicts a sharp transition between
stable equilibria (see Fig. 3b), and no intermediate sta-
ble states. Although information about the underlying
bifurcation structure is lost, the predicted equilibria and
their stability agree with simulations of the SMM, and,
when κ > κ∗, with experimental observations.

While a general closed form solution for κ∗ is not avail-
able, approximate solutions are obtainable for large do-
mains. This allows us to see how κ∗ scales with trap
size for different interaction kernels. To reduce parame-
ter number, we fix M and N , and use a single parameter,
s, to determine lattice dimensions as sM × sN . Expand-
ing µ(κ, sM, sN) to second order in κ, and solving for κ∗

shows that for exponential kernels,

κ∗ ∼ 2/(MNs2) ∼ s−2. (4)

For interaction kernels that decay with the inverse power
of distance from the boundary, v+κ (i) = λ/(1 + κ(M −
i)α), α ∈ (0,∞),

κ∗ =
(α+ 1)(N −M)

sα+1MN(Nα −Mα)
∼ s−(α+1)

for large s (See SI).
These asymptotic results agree with simulations (See

Fig. 4b): κ∗ → 0 as s → ∞ at the predicted asymptotic
rate. Interestingly, the exponential interaction kernel
does not produce the strongest decay of κ∗ with s. The
aspect ratio of the trap, Γ, shifts the transition points,
but does not change the scaling (See inset of Fig. 4b).
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In large traps even weak cell-cell interactions can cumu-
latively dominate boundary effects, and lead to steady-
state cell alignments orthogonal to the trap’s long side.

Discussion. We showed that cell-cell interactions and
boundary effects drive steady-state alignment of bacterial
cells in a model of rectangular microfluidic traps: Cell
loss across the trap’s edge drives growth parallel to the
long side of the trap, while cell-cell interactions drive
orthogonal growth. The full stochastic model is well-
approximated by a logistic equation which allowed us to
analyze the phase transitions in detail.

Similar SMMs have been used to understand tumor
initiation and growth [30–33]. However, these models
did not include spatially-dependent growth rates and in-
cluded different boundary conditions. While some anal-
ysis is possible, the behavior of these systems is typically
less tractable.

Our model is easily extended: We can allow for
stochastic switching of orientation, and include more
than two orientations. Experiments in rectangular mi-

crofluidic devices show that cell alignment destabilizes
near the short boundary. Our model extends to cap-
ture these features by allowing cell-cell interactions only
within a certain distance. Furthermore, we can model
multiple bacterial strains by increasing the number of
occupational states at a lattice site. Including dynamical
equations that describe cellular communication via quo-
rum sensing molecules would then allow us to examine
the interplay between cell distribution, communication
and growth that determine bacterial collective dynam-
ics [7, 8, 34, 35].

ACKNOWLEDGMENTS

We thank P. Bressloff and J. Winkle for helpful com-
ments. This work was supported by NIGMS grant
R01GM117138 (BRK, MRB, WO, and KJ) and NSF
grant DMS-1662290 (BRK, MRB, and KJ).

[1] J. K. Parrish, S. V. Viscido, and D. Grünbaum, Biol.
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[4] T. Guérin, J. Prost, P. Martin, and J. Joanny, Curr.
Opin. Cell Bio. 22, 14 (2010).

[5] B. I. Shraiman, PNAS 102, 3318 (2005).
[6] F. Si, B. Li, W. Margolin, and S. X. Sun, Scientific

Reports 5 (2015).
[7] Y. Chen, J. K. Kim, A. J. Hirning, K. Josić, and M. Ben-
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M. Bennett, Quantitative Biology 5, 55 (2017).
[9] H. Song, S. Payne, M. Gray, and L. You, Nature Chem-

ical Biology 5, 929 (2009).
[10] C. M. Agapakis, P. M. Boyle, and P. A. Silver, Nature

Chemical Biology 8, 527 (2012).
[11] P. Bittihn, M. O. Din, L. S. Tsimring, and J. Hasty,

Curr. Opin. Microbiol. 45, 92 (2018).
[12] H. Cho, H. Jönsson, K. Campbell, P. Melke, J. W.

Williams, B. Jedynak, A. M. Stevens, A. Groisman, and
A. Levchenko, PLOS Biology 5, e302 (2007).

[13] D. Volfson, S. Cookson, J. Hasty, and L. S. Tsimring,
PNAS 105, 15346 (2008).

[14] M. Delarue, J. Hartung, C. Schreck, P. Gniewek, L. Hu,
S. Herminghaus, and O. Hallatschek, Nature Physics 12
(2016).

[15] J. J. Winkle, O. Igoshin, M. Bennett, K. Josić, and
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[29] U. C. Täuber, Critical Dynamics: A Field Theory Ap-
proach to Equilibrium and Non-Equilibrium Scaling Be-
havior (Cambridge University Press, 2014).

[30] N. L. Komarova, Bull. Math Bio. 68, 1573 (2006).
[31] R. Durret and S. Moseley, Ann. Appl. Prob. 25, 104

(2015).
[32] R. Durret, J. Foo, and K. Leder, J. Math Bio. 72, 1369

(2016).
[33] K. Kaveh and N. L. Komarova, Roy. Soc. Open Sci.

(2015).
[34] W. Kong, V. Celik, C. Liao, Q. Hua, and T. Lu, Biores.

and Bioproc. , 1 (2014).
[35] O. Kanakov, T. Laptyeva, L. S. Tsimring, and

M. Ivanchenko, Physica D: Nonlin. Phen. 318-319, 116
(2016).

.CC-BY 4.0 International licensepeer-reviewed) is the author/funder. It is made available under a
The copyright holder for this preprint (which was not. http://dx.doi.org/10.1101/328583doi: bioRxiv preprint first posted online May. 22, 2018; 

http://dx.doi.org/10.1101/328583
http://creativecommons.org/licenses/by/4.0/

	Boundary-Driven Emergent Spatiotemporal Order in Growing Microbial Colonies
	Abstract
	Acknowledgments
	References


