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Impact of correlated information on pioneering decisions
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Normative models are often used to describe how humans and animals make decisions. These models treat
deliberation as the accumulation of uncertain evidence that terminates with a commitment to a choice. When
extended to social groups, such models often assume that individuals make independent observations. However,
individuals typically gather evidence from common sources, and their observations are rarely independent. Here
we ask: For a group of ideal observers who do not exchange information, what is the impact of correlated
evidence on decision accuracy? We show that even when agents are identical, correlated evidence causes decision
accuracy to depend on temporal decision order. The first decider is less accurate than a lone observer, and
early deciders are less accurate than late deciders. These phenomena occur despite the fact that the rational
observers use the same decision criterion, so they are equally confident in their decisions. We analyze discrete
and macroscopic evidence-gathering models to explain why the first decider is less accurate than a lone observer
when evidence is correlated. Pooling the decisions of early deciders using a majority rule does not rescue
accuracy results in only a modest accuracy gain. Although we analyze an idealized model, we believe that
our analysis offers insights that do not depend on exactly how groups integrate evidence and form decisions.
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I. INTRODUCTION

Most organisms and many computational algorithms make
decisions based on a sequence of noisy observations of the en-
vironment [1]. Normative models that describe how evidence
should be integrated to make the best choice are central to
our understanding of such decisions [2]. When an observer
needs to choose between alternatives, accumulating evidence
refines their perceived probability of the truth of each alter-
native. Decision policies often prescribe a threshold on the
accumulated evidence in order to balance the speed and ac-
curacy of decisions [3,4]. These theories have been developed
and validated over decades in experiments with humans and
other animals [5–9]. However, most previous work was fo-
cused on individual decision makers, and less is known about
groups of observers who make choices based on streams of
evidence [10,11].
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Each member of a social group often needs to choose
between the same alternatives based on a combination of cor-
related and independent observations [12]. For instance, when
deciding whom to vote for, two individuals may see some of
the same media coverage, but each may also read opinion
pieces that the other does not [13]. Conspecifics deciding
where to forage are likely to rely on some of the same cues
but can also learn from distinct experiences [14]. Traders may
have access to private information but often track the same
aggregate market indices and reports to decide what stocks to
buy and sell, and the processes governing the valuation of dis-
tinct commodities are known to be correlated [15]. Thus, even
in the absence of direct communication, the measurements
individuals in a group use to make decisions are generally
imperfectly correlated.

Here we assess the impact of such correlated mea-
surements on the accuracy of individual decisions within
groups of agents who do not share information (see Fig. 1).
When identical, rational, unbiased agents make indepen-
dent observations the probability of a correct decision is
independent of the order or the time at which the deci-
sion is made [16,17]. However, when such agents makes
correlated measurements, early deciders tend to make deci-
sions based on misleading observations, and their choices
are less accurate than those of later deciders by as much
as 20%. The order of a decision can therefore determine
its accuracy, despite each agent subjectively believing their
decision is based on the same amount of evidence, and thus
as accurate as that of anyone else. Yet an outsider who
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(a) (b) (c)

FIG. 1. Agents receiving partially correlated evidence. (a) Agents make a sequence of measurements to decide between alternatives. At
each time step agents all make the same observation with probability c and independent observations with probability 1 − c. (b) Representative
trajectories of the log-likelihood ratios (LLRs) computed at discrete times [Eq. (2)] for c = 0.25 and c = 0.75 and two agents. Green segments
correspond to increments due to common observations, and red segments arise from independent observations. An agent commits to a decision
(±) when the computed LLR crosses ±θ . (c) Analogous trajectories generated from simulations of the limiting drift-diffusion model [Eq. (3)].

observes the order in which decisions are made knows that
early decisions are less likely to be correct than later ones. We
analytically show why this is the case in tractable examples
and provide an intuitive argument explaining why the same
holds more generally. Our analysis demonstrates why this
difference in accuracy depends on how strongly evidence is
correlated and on the size of the population. We also show
that pooling early decisions does not always help, but weight-
ing individual decisions according to their order can produce
better results.

II. MODEL

We consider a community of N agents who accumu-
late evidence to decide between two states, or hypotheses,
H+ or H−. Each agent accumulates evidence (observations)
to decide between the two hypotheses. Agents are rational
(Bayesian) and compute the probability that either hypothe-
sis holds based on all evidence they accrue. Each makes a
decision once the log-likelihood ratio (LLR) of the condi-
tional probabilities between the two hypotheses, given all the
accumulated observations, crosses one of two predetermined
decision thresholds [2,18]. For simplicity, we assume that the
observations the agents make are statistically identical and
that they use the same decision policy.

A. Independent evidence accumulation

The problem of a single agent integrating evidence to
decide between two options has been thoroughly stud-
ied [2,10,18–21]. In the simplest setting, an agent makes a
sequence of noisy observations (measurements), ξ1:t , with
ξi ∈ � for i ∈ {1, . . . , t}, where � ⊂ R. The observations, ξi,

are independent and identically distributed, conditioned on the
true state, H ∈ {H+, H−},

P(ξ1:t |H±) =
t∏

i=1

P(ξi|H±) =
t∏

i=1

f±(ξi ).

Here the conditional probability of each measurement is given
by the probability mass functions, f±(ξ ) := P(ξ |H±), when
the conditional probability distributions are discrete, or by

density functions when they are absolutely continuous. Ob-
servations, ξi, are drawn from the same set, �, in either state
H±, and the two states are distinguished by the differences
in the conditional probabilities of making certain measure-
ments. See Appendix A for details on how the restriction
� = {ξ+, ξ−} can confine beliefs to evolving on the integer
lattice.

To compute the probability of the two choices, given all
observations, P(H±|ξ1:t ), an ideal observer uses Bayes’ rule.
For simplicity, we assume that the agent knows the measure-
ment distributions, f±(ξ ), and knows that both environmental
states are equally likely, and hence uses a flat prior, P(H+) =
P(H−) = 1/2. The log-likelihood ratio (LLR) of the two
states at time t is then

yt := log

(
P(H+|ξ1:t )

P(H−|ξ1:t )

)
=

t∑
s=1

LLR(ξs) = yt−1 + LLR(ξt ),

(1)

where LLR(·) ≡ log P(·|H+ )
P(·|H− ) . We also refer to yt as the belief of

the agent at time t . The magnitude of the LLR can be viewed
as the information an agent has gathered in support of a
hypothesis, while its sign describes the choice preference (H+

or H−) of the agent. The flat prior implies y0 = log P(H+ )
P(H− ) =

log 1/2
1/2 = 0.

The optimality of the sequential probability ratio test [18]
implies that an individual agent best manages speed and accu-
racy by waiting to decide until their belief reaches or crosses
above (below) an upper (lower) threshold θ+ > 0 (θ− < 0).
Thus, an ideal agent continues making observations while
θ− < yt < θ+ and makes a decision after acquiring suffi-
cient evidence, choosing H+ (H−) once yt � θ+ (yt � θ−).
We have analyzed a generalization of this model to social
networks both small [22] and large [17], where each agent
accrues independent information according to Eq. (1) and
shares their decision state with some or all other agents in
the group. These models of normative information exchange
based on neighbors’ decisions build on previous work on
normative confidence weighting for majority rules [23–26],
locally optimal Bayesian integration on sparse graphs [27],
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the impact of common observations [16], and nonnormative
decision sharing [28].

B. Accumulation of correlated measurements

We analyze the impact of correlated information on the ac-
curacy of the decisions of a community of N independent and
isolated agents. At each time step, t , every agent, i, makes an
observation (measurement), ξ i

t ∈ �, and updates their private
belief, yi

t , according to Eq. (1). However, an individual agent
does not know whether others have made decisions or what
those decisions were, in contrast to social network models
studied in the past [17,22–32]. This could be a model of a
sample of voters, each of whom does not know the others, or
traders deciding to buy or sell a stock without tipping their
hand.

To model correlated measurements, we assume that on
each time step all agents make an identical observation with
probability c. An identical observation means that ξ i

t = ξt for
all agents, i = 1, . . . , N , where ξt is a single sample from
the measurement distribution, f±(ξ ). With probability 1 − c
agents make independent observations during a time step, and
the N measurements, ξ i

t , are sampled independently from the
distribution f±(ξ ). This is equivalent to having N private,
independent sources of evidence, each accessible to a single
agent, and one common evidence source accessible to all
agents (see the Discussion for less restrictive assumptions).
Therefore, the belief of each agent evolves according to

yi
t = yi

t−1 + (1 − χt )LLR
(
ξ i

t

) + χt LLR(ξt ), (2)

where χt are i.i.d. Bernoulli random variables each with
parameter c. When c = 1 agents make only common ob-
servations, and when c = 0 agents make only independent
observations. As c increases from zero, each observation is
more likely to be common, and the overall evidence becomes
more correlated.

Each agent makes observations until their belief, yi
t ,

reaches one of the thresholds, θ±, at which point they make the
corresponding decision, H±. For simplicity we henceforth as-
sume the thresholds are symmetric about zero, i.e., θ± = ±θ ,
with θ > 0. We denote the decision time of agent i by Ti, and
assume that decisions are immutable. Thus, decision times are
uniquely defined, and only undecided agents continue to make
observations.

Importantly, each agent is isolated and does not observe
others’ decisions or their decision state (decided or unde-
cided), in contrast with [17,22]. Agents do not know whether
an observation is common or private, and each uses the evi-
dence they have collected to make the best possible decision
based on their belief (LLR) given by Eq. (2).

We ask how the accuracy of an agent’s decision depends
on the order in which the decision is made. In particular, how
accurate is the first decider? If multiple agents make a decision
at first-decision time, the “first” decider is chosen randomly
with equal probability from that group. The probability of a
correct first decision then equals the probability that this first
decider makes the correct choice, i.e., that the belief of the first
decider reaches the threshold, ±θ, whose sign agrees with that
of the true environmental state, H±. We briefly discuss other
ways of defining a first decision in Appendix B.

C. Scaling limit of correlated evidence accumulation

Computing decision accuracy and the distribution of de-
cision times reduces to a first-passage problem [2]. Often it
is easier to solve such problems in the scaling limit, thus
avoiding the combinatorial challenges common in discrete
problems [33]. By invoking the Donsker Invariance Prin-
ciple [34], in the limit of infinitely many infinitesimally
informative measurements we obtain the macroscopic version
of Eq. (2), often referred to as a drift-diffusion equation:

dyi = ±μ dt +
√

2(1 − c)μ dWi +
√

2cμ dWc. (3)

Here yi(t ) is the limit of the LLR of agent i and μ scales both
the drift and diffusion terms. See Appendix C for a derivation
of Eq. (3), verification of agreement with the discrete model,
and definition of μ, which is proportional to the square of
the signal-to-noise ratio of the sample distribution. The sign
of the drift agrees with the sign of the environmental state,
H±. The Wiener processes, Wi(t ) and Wc(t ), capture the vari-
ability of belief increments due to independent and common
observations, respectively. Thus, the belief of each observer,
yi(t ), evolves according to a drift-diffusion model [2] with
a combination of independent and correlated noise sources.
This model has been analyzed previously [16,35], but we are
not aware of a previous derivation from the normative model
(see Discussion).

III. RESULTS

We first asked how correlated evidence impacts the accu-
racy of decisions within a group of rational, identical agents.
The probability that a randomly selected agent in the group
makes a correct choice does not depend on the number of
other agents or on how strongly the evidence is correlated.
However, for all 0 < c < 1, the probability that the first de-
cider in the group is correct is smaller than the probability
that a lone observer is correct, reaching an internal minimum
[Fig. 2(a)].

Since every individual agent’s perception of the correct
hypothesis and decision process are described by the same
stochastic process, each agent has the same subjective esti-
mate that their choice is correct, (1/(1 + e−θ ) [2,36]. Indeed,
this is the probability that a randomly chosen agent makes a
correct decision. However, the first agent to make a decision
is less likely to make a correct choice than all other agents
in a group, and this probability decreases with the number
of agents in the community [Fig. 2(b)]. Furthermore, decider
accuracy increases almost monotonically with the order of the
decision [Fig. 2(c)]. Thus, someone observing the order in
which decisions are made should trust later decisions more
than early ones. Decision times of distinct agents get closer
as common observations become more probable [Fig. 2(d)],
since the observers’ beliefs evolve more synchronously.

The decreased accuracy of the first decider for 0 < c < 1
relative to single-decider accuracy is not a trivial consequence
of early deciders spending less time accumulating evidence.
If this were the case, the first decider would be less accurate
than later ones when c = 0. But when all observations are in-
dependent, the probability of a correct decision is independent
of the order in which the decision is made and is determined
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(a) (b)

(c) (d)

FIG. 2. Impact of the probability of making a common observation, c, on decider accuracy and timing. (a) The probability of a correct
decision increases with the order in which the decision is made (solid lines) and varies nonmonotonically with c. The average accuracy
computed over all deciders (dashed line) equals the accuracy of a randomly chosen agent and is constant with c. N = 100. (b) The accuracy of
the first decider varies nonmonotonically with c, possessing an internal minimum 0 < cmin < 1. As N increases, the lowest accuracy decreases.
(c) The accuracy of each of N = 100 deciders increases with decision order almost monotonically, so the first (last) decider is less (more)
accurate than a lone decider for c �= 0, 1. (d) The time of the decision of N = 100 agents as a function of order is approximately invariant to
changes in the probability of common evidence, c. We used the discrete LLR model Eq. (2) with θ = 10 and binary likelihood functions f± as
described in Appendix A. Specifically we chose f± so that the update size is ±0.05.

by the decision threshold. However, a common initial bias can
also lead to accuracies that depend on decision order, even
when measurements are independent (see Discussion as well
as [22,37]). Moreover, as c is increased from 0 to approxi-
mately 0.5, the average time to the first decision increases,
but the average accuracy of this decision decreases. We next
provide an explanation of this observation.

A. An intuitive explanation for the decrease
in first decision accuracy

Why do common observations lead to less accurate first
decisions? At the time of the first decision, the remaining
undecided agents have likely made independent observations
that counter the common observations that often contribute to
the first decider’s choice. Indeed, if these independent obser-
vations aligned with this choice and the common evidence,
the other agents would likely have already made a decision as
well. For small c, little information is gained from common
evidence, and not much independently gathered evidence is

needed to counter it. As c increases, common evidence more
often drives the first decision, so we expect a substantial frac-
tion of the independent evidence collected by an undecided
agent will often counter the common evidence. However,
when c is large, most evidence is common, and fewer obser-
vations are independent, leaving less time for strong, contrary
independent observations. Thus, at a critical value of c, the
average total independent evidence obtained by undecided
agents countering common observations reaches a maximum.
The probability of a correct first decision is smallest at this
critical value. In the next subsection, we sharpen this argument
by showing independent observations made by undecided
agents that favor the correct decision are stronger when the
first decider makes an incorrect choice than in the opposite
case.

B. Reduction of the log-likelihood ratio of the first decider

We next show mathematically why the first decider’s
choice is less accurate than that of a randomly chosen agent
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selected with equal probability from all agents in the group
prior to evidence accumulation. To do so, we write the log-
likelihood ratio (LLR) associated with the probability the first
decider makes the correct choice as a sum of two terms: One
term is the LLR of a randomly selected agent at decision time,
while the second incorporates the condition that this agent
is the first decider. We show that the first term’s magnitude
equals θ , while the second term is negative for 0 < c < 1.
Thus, the information obtained by undecided agents reduces
the probability of a correct first decision. We begin by consid-
ering a pair of agents and obtain expressions for the sum of
LLR terms in the case of beliefs evolving on a lattice. We then
extend this calculation to an arbitrary number of agents.

1. Pair of agents in discrete time

We randomly number the agents using indices j = 1, 2,

and let FD be the index of the first decider. Let Tj be
the time of the decision of agent j, and denote the deci-
sion of agent j by d j ∈ {H+, H−}, so that y j (Tj ) = ±θ and
|y j (t )| < θ when 0 � t < Tj . Let T = min(T1, T2) denote the
time of the first decision. We assume the first decider chooses
H+ (dFD = H+) without loss of generality (WLOG), and

write the conditional probability P±(dFD = H+) := P(dFD =
H+|H±) as

P±(dFD = H+) =
2∑

j=1

P±(d j = H+, FD = j)

=
2∑

j=1

P±(FD = j|d j = H+)P±(d j = H+)

= 2P±(d1 = H+)P±(FD = 1|d1 = H+),

(4)

where the final line follows from the exchange symmetry
between the two agents. The first term in Eq. (4) is the
P± probability that a randomly chosen agent (here agent 1,
WLOG) selects H+, depending only on agent 1’s observa-
tions. The second term is the P± probability that, conditioned
on choosing H+, agent 1 is also the first to decide, which
depends on information gathered by agent 2.

The second term on the right side of Eq. (4) can be rewrit-
ten as a sum over T1, T2 ∈ N and then simplified by noting that
FD = 1 with certainty if T1 < T2 and with probability 1/2 if
T1 = T2:

P±(dFD = H+) = 2P±(d1 = H+)
∑
t1∈N

∑
t2∈N

P±(FD = 1|T1 = t1, T2 = t2, d1 = H+)P±(T1 = t1, T2 = t2|d1 = H+),

= 2P±(d1 = H+)
∑
t1∈N

[
1

2
P±(t1 = T1 = T2|d1 = H+) + P±(t1 = T1 < T2|d1 = H+)

]
.

Using Eq. (4) we can thus write the corresponding LLR of the first decider at the time of their decision as

LLR(dFD = H+) = log
P+(dFD = H+)

P−(dFD = H+)
= LLR(d1 = H+) + LLR(FD = 1|d1 = H+).

The first term in this sum is the LLR of the decision a randomly chosen agent (taken here to be agent 1 WLOG), LLR(d1 =
H+) = θ . The second term is given by

LLR(FD = 1|d1 = H+) = log

∑
t1∈N

[
1
2 P+(t1 = T1 = T2|d1 = H+) + P+(t1 = T1 < T2|d1 = H+)

]
∑

t1∈N
[

1
2 P−(t1 = T1 = T2|d1 = H+) + P−(t1 = T1 < T2|d1 = H+)

] . (5)

Now, if agent 1 has made an incorrect decision, one inconsistent with the true hypothesis, both this agent’s common and
independent observations are likely to support the incorrect decision. But, by assumption, any randomly sampled observation is
more likely to be consistent with the true than the wrong hypothesis. Thus, the independent observations of agent 2 are likely
to point to the correct hypothesis, conflicting with the common observations supporting the incorrect decision of agent 1. As a
result, agent 2 more likely decides after T1 when agent 1’s choice is wrong than when it is correct. This argument shows that we
expect ∑

t1∈N

[
1

2
P+(t1 = T1 = T2|d1 = H+) + P+(t1 = T1 < T2|d1 = H+)

]

<
∑
t1∈N

[
1

2
P−(t1 = T1 = T2|d1 = H+) + P−(t1 = T1 < T2|d1 = H+)

]
(6)

for 0 < c < 1, so that Eq. (5) implies LLR(FD = 1|d1 =
H+) < 0 for such values of c. As a result, LLR(dFD =
H+) < LLR(di = H+) = θ for i = 1, 2 and 0 < c < 1,
so the first decider makes a correct choice less of-
ten than an agent chosen at random. This argument can

be extended to N > 2 agents in most cases, demon-
strating an increased probability and volume of con-
trary evidence in more remaining undecided agents, caus-
ing a larger drop in the first decider’s accuracy (see
Appendix C).
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(a) (b)

(c)

FIG. 3. When evidence is partially correlated, a randomly selected agent is more likely to be the first decider if they are wrong. (a) Joint
distribution of the probability that agent 1 decides first (FD = 1) and the belief of agent 2 at that decision time, y2 = y2(T1), conditioned on
agent 1 being right (d1 = H+ = H , blue) or wrong (d1 = H+ �= H , red). When 0 < c < 1, the accuracy of the first decider is strictly below
that of a randomly selected agent (here agent 1, WLOG) because of inequality (6). When c is small, P+(FD = 1|d1 = H+) nearly equals
P−(FD = 1|d1 = H+) (difference indicated by green line), since the joint distributions are approximately reflections of one another, i.e.,
P+(FD = 1, y2(T1)|d1 = H+) ≈ P−(FD = 1, −y2(T1)|d1 = H+), with equality holding when c = 0. As c increases, the difference P−(FD =
1|d1 = H+) − P+(FD = 1|d1 = H+) first grows (c = 0.5) and then shrinks (c = 0.9), as both terms converge to 1/2 as c → 1. As discussed
in Appendix A, each observation changes an agent’s belief, y j , by ±1; e.g., when FD = 1 and y1(T1) = ±3, then y2(T1) is also an odd integer.
(b) The probability that agent 1 decides first (conditioned on d1 = H+ and H = H−) as a function of c peaks around c = 0.5. (c) Colormap of
the joint distributions from (a) as functions of c. Here we used the discrete LLR model (2) with θ = 3 and binary likelihood functions f± as
described in Appendix A. f± are chosen so the update size is ±1.

Moreover, as c increases, so does the fraction of wrong
common observations that can be countered by correct inde-
pendent observations of agent 2. This initially increases the
likelihood that agent 2 remains undecided following incorrect
decisions by agent 1. But if c is high, most observations are
common, and agent 2 makes few independent observations.
Thus, as c approaches 1 the agents’ beliefs tend to evolve
more synchronously, and the difference between the left and
right sides of inequality (6) decreases. This tension between
the increase, with c, in the fraction of wrong common obser-
vations that are likely to be counteracted, and the decrease in
the fraction of correct independent observations that can coun-
teract them causes Eq. (5) to achieve an internal minimum,
0 < cmin < 1.

Numerical experiments support this explanation. Fig-
ure 3 illustrates the case of two agents, each with deci-
sion threshold magnitude θ = 3. As our argument predicts,
P+(FD = 1|d1 = H+) < P−(FD = 1|d1 = H+) for all 0 <

c < 1 [Fig. 3(b)]. Further, the difference P−(FD = 1|d1 =
H+) − P+(FD = 1|d1 = H+) first grows and then shrinks as

c increases, due mainly to the unimodalilty of the conditional
probability that agent 1 decides first when their choice is
wrong, P−(FD = 1|d1 = H+). Looking at the joint condi-
tional probabilities of FD = 1 and the belief of agent 2 at the
time of the first decision, P+(FD = 1, y2(T )|d1 = H+) and
P−(FD = 1, y2(T )|d1 = H+) helps illuminate the situation.
Figure 3(a) shows these joint distributions for representative
values of c with θ = 3. The distribution of beliefs, y2, concen-
trates more on values y2(T ) = ±1, away from the thresholds,
when H = H− than when H = H+ for intermediate values
of c [Fig. 3(c)].

2. Two agents with decision threshold magnitude θ = 2

We now discuss the case where θ = 2, allowing us to com-
pute exact expressions for Eq. (5), since two measurements
are sufficient for belief magnitude to reach the bound. As in
Appendix A, we assume there can only be two measurement
values (ξ±), and f±(ξ±) = p+ = e/(e + 1) and f±(ξ∓) =
1 − p+ ≡ p−, so beliefs are restricted to the integer lattice.
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Setting thresholds to ±θ = ±2, the belief of any undecided
agent, i, must equal yi

t = ±1, at any odd time, and yi
t = 0 at

any even time. Thus, the stochastic process governing the ev-
idence accumulation of undecided agents resets to 0 (renews)
every two time steps. If T is the time of the first decision, then

P(dFD = H±, T = t |T > t − 2) = P(dFD = H±, T = 2)

for all even t > 0, since if T > t − 2 then at time t − 2 both
agents must have been undecided with beliefs yi

t−2 = 0.
We now enumerate and sum the probabilities of all cases

in which agent 1 (not necessarily the first decider) makes
decision d1 = H+ under either condition, H = H±. There are
four ways for the two agents to make a simultaneous decision:
If d1 = H+, agent 2 can make the same decision (d2 = H+)
given zero, one, or two independent measurements, or the
opposite choice (d2 = H−), if they made two independent
measurements. Therefore,

P±(T1 = T2 = t |d1 = H+, T > t − 2)

= c2 + 2c(1 − c)p± + (1 − c)2(p2
+ + p2

−).

The second agent may remain undecided at the time of the first
agent’s decision if they made one independent measurement
that conflicts with the first agent’s decision, or two indepen-
dent measurements that conflict with each other:

P±(T1 = t < T2|d1 = H+, T > t − 2)

= 2c(1 − c)p∓ + 2(1 − c)2 p+ p−. (7)

Now let m ∈ N and t1 = 2m. Referring to the sums in Eq. (5),
we have

P±(t1 = T1 = T2|d1 = H+)

= P±(t1 = T1 = T2|d1 = H+, T > t1 − 2)

× P±(T > t1 − 2|d1 = H+)

= P±(t1 = T1 = T2|d1 = H+, T > t1 − 2)P(T > t1 − 2)

= P±(t1 = T1 = T2|d1 = H+, T > t1 − 2)[P(T > 2)]m−1.

A similar calculation gives

P±(t1 = T1 < T2|d1 = H+) = P±(t1 = T1 < T2|d1

= H+, T > t1 − 2)[P(T > 2)]m−1.

We factor common terms out of the sums in Eq. (5) and
cancel sums over factors of P(T > 2)m−1 in the numerator and
denominator to obtain an explicit form of Eq. (5),

LLR(FD = 1|d1 = H+)

= log
[c2 + 2c(1 − c)(1 + p−) + (1 − c)2(1 + 2p+ p−)]

[c2 + 2c(1 − c)(1 + p+) + (1 − c)2(1 + 2p+ p−)]
.

(8)

The numerator and the denominator in this expression differ
only in the middle terms, 2c(1 − c)(1 + p−) < 2c(1 − c)(1 +
p+) for 0 < c < 1, which is the probability that agent 2 makes
an independent observation that counters the agents’ common
observation, in agreement with our general explanation. As
discussed previously, this is more likely when the decision of
the first agent (and the common measurement) is wrong.

3. Macroscopic case

Our results for the discrete model extend to agents with
continuously evolving beliefs, obtained in the limit of many
weak observations (see Appendix C). Agents’ beliefs, y j (t ),
each evolve according to Eq. (3) until crossing a thresh-
old ±θ , determining the choice d j = H± and decision time
Tj ∈ (0,∞) for j = 1, . . . , N . Define T = (T1, . . . , TN ) ∈
(0,∞)N ≡ RN

+. For finite N and c < 1, the probability that
two agents decide at the same time is zero, so we need not
account for simultaneous decisions. By marginalizing over all
agents and decision times, we obtain

P±(dFD = H+) = NP±(d1 = H+)

×
∫
RN+

P±(FD = 1|T = t, d1 = H+)g±(t|d1 = H+) dt .

Here g±(·|d1 = H+) is the conditional probability density
function for T, conditioned on the state, H = H±, and on the
decision d1 = H+. We have P±(FD = 1|T = t, d1 = H+) =
1 if t1 = min1�i�N ti and otherwise this quantity is zero,
simplifying the multi-dimensional integral in the preceding
expression to an integral over the t1 axis and allowing us to
write

LLR(dFD = H+) = θ + log

∫
R+

G+(t1|d1 = H+) dt1∫
R+

G−(t1|d1 = H+) dt1
,

where the second term is the log of the ratio of the prob-
abilities that all other agents are undecided at the time at
which agent 1 chooses H+. Terms in the ratio are obtained
by integrating the probability density

G±(t1|d1 = H+)

=
∫

(t1,∞)N−1
g±(t1, t2, . . . , tN |d1 = H+) dt2 · · · dtN ,

across all possible times of the decision of agent 1, given that
agent 1 chooses H+.

When N = 2, the nonmonotonicity of the first decider’s
accuracy in c is due to the tension between opportunity for
contradiction in agent 2’s observations and the decreasing
prevalence of independent observations, as c increases. The
densities d

dz P(FD = 1, y2(T ) � z|d1 = H+, H ) are nearly re-
flections of one another for small c [Fig. 4(a), top left].
Integrating over z, the difference P−(FD = 1|d1 = H+) −
P+(FD = 1|d1 = H+) is small when c is small [red bar minus
blue bar, Fig. 4(a), top center]. For intermediate values of
c, the distribution of beliefs of agent 2 is pulled away from
the correct threshold when agent 1 decides incorrectly, due
to common observations, causing P−(FD = 1|d1 = H+) −
P+(FD = 1|d1 = H+) to reach a maximum within the in-
termediate c range. When c is close to 1, both P−(FD =
1|d1 = H+) and P+(FD = 1|d1 = H+) converge to 1/2, so
the difference converges to zero. Figure 4(b) shows that the
unimodal response of first-decider accuracy as c increases
occurs because the probability P−(FD = 1|d1 = H+) of an
incorrect agent deciding first increases for small c and then
decreases in c (red curve), while P+(FD = 1|d1 = H+) is
approximately insensitive to c (blue curve).
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(a) (b)

FIG. 4. When beliefs evolve continuously and evidence is correlated, a randomly selected agent is again more likely to decide first if
they are wrong. (a) As in the discrete model, the densities p(FD = 1, y2|d1 = H+, H ) are nearly reflections of one another for small c. By
marginalizing over the distribution of beliefs, y2, we can obtain the difference P−(FD = 1|d1 = H+) − P+(FD = 1|d1 = H+). This difference
is small when c is small (red bar minus blue bar). As c increases, this difference first increases and then decreases, the latter because each
term in the difference converges to 1/2 as c → 1. (b) The unimodal response of first-decider accuracy as c increases is again due to P−(FD =
1|d1 = H+) obtaining a maximum around c = 0.5. We used the macroscopic model (3) with unit drift and variance and threshold θ = 3.

C. Pooling over early deciders does not rescue accuracy

The “wisdom of crowds” is the idea that collective deci-
sion by a group of people is more likely to be correct than
the decision of any single member of the group [23,38]. A
group’s decision accuracy can be improved when individu-
als exchange information preceding their final decisions or
when the group decision is determined by the majority of
individual choices [17,23,27,39,40]. However, this improve-
ment can be diminished, and individuals can even outperform
crowds when biases in individual decisions are not accounted
for when forming the group decision [41,42]. Applying a
majority rule to an initial pool of early deciders, we show
that even modest correlations in information can cause this
pool to make less accurate choices than a randomly selected
agent and only slightly improves on the accuracy of the first
decider [Figs. 5(a) and 5(b)]. The additional time required to
obtain these additional opinions is appreciable and roughly

independent of the population size, N [Fig. 5(c)]. Hence,
even weak correlations in evidence impact the accuracy of
collective decisions.

IV. DISCUSSION

Humans and other animals integrate evidence to make de-
cisions. Often members of a group or community are faced
with the same choices and will use evidence that is avail-
able to all of them to decide between a common set of
options [43–45]. We have shown that when some observations
are made in common, even when no social information is ex-
changed, the first individual to decide makes the least accurate
decision. The accuracy of subsequent decisions increases in
the order in which they are made, with few exceptions.

We have focused on agents deciding between two op-
tions, so that response accuracy can be computed as exit
probabilities of populations of univariate stochastic processes

(a) (b) (c)

FIG. 5. Pooling choices of early deciders using a majority rule mildly improves accuracy compared to the first decision when evidence is
correlated. (a) The group’s decision is determined by the majority of the first Npool deciders. For different population sizes, N , the accuracy
of the group decision at first decreases as c is increased and can be lower than the accuracy of a single decider in isolation (dashed line).
Npool = 0.2N . (b) Improvement in the accuracy obtained by pooling the first Npool = 0.2N decisions compared with the accuracy of the first
decision drops substantially even for small values of c and is nearly independent of N . (c) The mean time at which the last decider in the pool
makes a decision increases with c (solid curves). Dashed curves give the mean time of the first decision. We used the macroscopic LLR (3)
with threshold θ = 10.
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driven by common and independent noise [46]. The accuracy
of the first agent to make a decision depends nonmonotoni-
cally on the probability c of making a common measurement.
When the accuracy of the first decision is at a minimum,
roughly half the observations are common. The remaining
independent observations allow the agent’s beliefs to diverge,
leading the first agent to often choose differently than later
deciders.

A similar result holds for groups of observers who have a
common initial bias and integrate independent evidence [22].
If there are many such agents, the first decision will almost
always correspond to the decision boundary closest to the
initial belief [37] and is thus wholly determined by the initial
common bias.

We made the simplifying assumption that all agents ei-
ther jointly make a common observation or all make private
observations on each time step. This requires a coordinated
measurement process, which is counter to our assumption
that agents do not share social information. We could relax
this assumption and allow agents to each independently make
measurements from two sources, one common to the group
and one available only to the agent. With two agents this
model is equivalent to the model we analyzed. More gener-
ally, different subsets of agents could have access to separate
sources of shared information, rather than a single common
source available to the entire community. The analysis of
these cases becomes more cumbersome, but we expect that
our general conclusions will hold.

Agents could also share their decisions, in which case the
fact that no decision has been announced up to a time t can be
informative. The first agent to reach threshold will know that
no other decisions have been made yet. This reveals that other
agents have gathered independent evidence that disagrees with
the first agent’s choice. The first agent can take this informa-
tion into account reducing their belief that what they thought
is the correct choice holds true. Similar reasoning can lead
to intricate social information exchanges [22]. However, hu-
mans frequently exhibit correlation neglect [47]. If observers
assume that information is uncorrelated, then the model we
described here may be applicable even when they observe
each other’s decisions.

We have assumed that the agents in the population are
identical. If agents have different decision thresholds, early
decisions tend to be driven by less evidence [2], generating
a decrease in accuracy unrelated to the effect of common ob-
servations. Correlated evidence could exacerbate this decrease
in accuracy. However, if agents have access to information of
different quality, early deciders tend to be those with access
to the best information [27]. In this case early decisions can
be more accurate than later ones. We expect correlated evi-
dence to still impact the accuracy of the first decision, but the
specifics would depend on the quality of common and private
evidence.

Except for limiting cases, we found it quite cumbersome
to obtain analytical expressions for the accuracy of the first
decider and other statistics of the agents’ decisions. However,
prior work has shown that the correlated drift diffusion model
generated in the macroscopic limit can be solved explicitly
using method of images solutions for specific threshold val-
ues [35]. In our case thresholds always form a square domain

encompassing both agents’ beliefs for N = 2 or cubes or
hypercubes for N > 2, but method of images approach may
still be applicable.

Like other mathematical models of cognition, our model
only roughly approximates decision-making processes used
by humans and animals. Despite its limitations, we believe
that our analysis offers important insights independent of the
exact way evidence is integrated and decisions formed in
groups: Common observations drive the beliefs of individuals
in the community in the same direction. If those common
observations are misleading, it takes time for private evidence
to counter their effect. When deciders use a substantial frac-
tion of common observations to make their decisions, early
decisions are most likely consistent with common observa-
tions. Thus, if common observations are right (wrong), the
first decision tends to be as well. First decisions thus tend
to be based predominantly on common evidence, which of-
fers less information than what is implied by the decision
threshold. We expect that the resulting asymmetric weight of
common evidence in determining the first decision leads to
similar effects more generally, e.g., when the population is
heterogeneous, faced with more than two choices, or when
observations are made asynchronously. Social information
exchange would lead to more subtle effects, modulating the
impact of common measurements. We have thus described
a general mechanism that can affect group decision-making,
with implications that transcend specific scenarios. The in-
sights we provided can describe decision-making processes
across a range of contexts and could be used to organize and
guide more effective individual and group choices.
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APPENDIX A: BELIEFS EVOLVING
ON THE INTEGER LATTICE

In the simplest case we can assume that an observer
can make only two measurements, ξ+ and ξ−. We let
P(ξ±|H±) = p+ and P(ξ±|H∓) = p− with p+ + p− = 1 and
p− < p+. Assuming p− = p+/e, gives p+ + p+/e = 1 so
p+ = e/(1 + e), p− = 1/(1 + e), and hence, LLR(ξ±) =
±1. Binarized evidence samples ξ± then increment or decre-
ment each agent’s belief yi

t by one, so the sum of an even (odd)
number of odd numbers, ±1, will be even (odd). In particular,
when p− = p+/a the information provided by observation ξ±
equals ± ln a. As a result, the belief of each agent, yi, lies on
a lattice defined by {n ln a}n∈Z, and we can use the mapping
n → n ln a or a logarithm in base a to place beliefs on an
integer lattice. In the double limit of infinitesimal evidence,
lima→1+ ln a, and infinitesimal time between observations, we
can recover a continuous-time model.

APPENDIX B: ALTERNATIVE DEFINITIONS
OF THE FIRST DECIDER

In the main text we defined the “first decider” as an agent
chosen with equal probability from the set of all agents who
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reach threshold at the same time. Alternatively, we could pool
all first deciders across trials and compute the probability an
agent in this entire pool makes a correct choice. In the scaling
limit, the probability that multiple agents reach the threshold
at the same time converges to zero, and the two definitions
are equivalent. However, when evidence increments are finite,
multiple agents can decide first simultaneously. In that case
choosing the first decider within a trial and pooling across
trials gives different results.

APPENDIX C: DERIVATION OF THE SCALING LIMIT

Let f+(ξ ) be a probability distribution of observations, ξ ,
over an arbitrary set � obtained in state H+, and f−(ξ ) the
probability distribution of observations over that same set �

in state H−. Note if the sets of observations for either state
differ, then there will be infinitely informative observations
which, when observed, would immediately make an agent
certain of the state. However, these occurrences could be rare,
in which case an accumulation process would still be needed.
As previously, we use y to denote accumulated LLR so that in
the discrete case we have

y(t ) =
∑
s�t

LLR(ξs), (C1)

where ξs is the observation obtained at time s � t . Similarly,
in the continuous case

y(t ) =
∫ t

0

dy(s)

ds
ds, (C2)

where dy
ds is given by the stochastic drift-diffusion equation de-

scribed previously.
We again assume that in a group of N observers each

observer at each time step t makes an independent private
observation with probability 1 − c, and all observers make a
common observation with probability c. Private and common
observations have the same conditional distributions, f±(ξ )
given the state H±.

For observations drawn from such general likelihood func-
tions, we can determine the statistics of the limiting stochastic
accumulation process by averaging the impact of multiple
“subobservations” on short intervals which we shrink to be
infinitesimal. Focusing on a single observer i, define a family
of stochastic processes parameterized by k, the number of
subobservations made in an interval of length �t . Thus, we
expect the LLR increment obtained each �t is given

�yt =
k∑

l=1

log
f+

(
ξ l

i,t

)
f−

(
ξ l

i,t

)

= Eξ

[
k∑

l=1

log
f+

(
ξ l

i,t

)
f−

(
ξ l

i,t

)
∣∣∣∣∣H

]

+
(

k∑
l=1

log
f+

(
ξ l

i,t

)
f−

(
ξ l

i,t

) − Eξ

[
k∑

l=1

log
f+

(
ξ l

i,t

)
f−

(
ξ l

i,t

)
∣∣∣∣∣H

])
.

We can split the sum not contained in an expectation into those
observations drawn from the common pool and those not,

�yt = Eξ

[
k∑

l=1

log
f+

(
ξ l

i,t

)
f−

(
ξ l

i,t

)
∣∣∣∣∣H

]
+

⎛
⎝ kc∑

l=1

log
f+

(
ξ l,c

i,t

)
f−

(
ξ l,c

i,t

) +
k−kc∑
l=1

log
f+

(
ξ l,n

i,t

)
f−

(
ξ l,n

i,t

) − Eξ

[
k∑

l=1

log
f+

(
ξ l

i,t

)
f−

(
ξ l

i,t

)
∣∣∣∣∣H

]⎞
⎠,

where ξ l,c
i,t are samples the ith agent sees from the common pool and ξ l,n

i,t are those they see from the independent pool. For large
k while keeping �t fixed, we know the number of common observations will scale as kc ≈ ck, so assigning

±μ�t ≡ Eξ

[
k∑

l=1

log
f+

(
ξ l

i,t

)
f−

(
ξ l

i,t

)
∣∣∣∣∣H = H±

]
,

assuming f±(ξ ) are scaled appropriately as �t → 0. We then estimate the variability in the incremental process as k → ∞ by
computing 〈(

kc∑
l=1

log
f+

(
ξ l,c

i,t

)
f−

(
ξ l,c

i,t

) +
k−kc∑
l=1

log
f+

(
ξ l,n

i,t

)
f−

(
ξ l,n

i,t

) − Eξ

[
k∑

l=1

log
f+

(
ξ l

i,t

)
f−

(
ξ l

i,t

)
∣∣∣∣∣H

])2〉

=
〈

kc∑
l=1

[
log

f+
(
ξ l,c

i,t

)
f−

(
ξ l,c

i,t

)
]2〉

− cμ2�t2 +
〈

k−kc∑
l=1

[
log

f+
(
ξ l,n

i,t

)
f−

(
ξ l,n

i,t

)
]2〉

− (1 − c)μ2 · �t2

= cVar

[
k∑

l=1

log
f+

(
ξ l,c

i,t

)
f−

(
ξ l,c

i,t

)
]

+ (1 − c)Var

[
k∑

l=1

log
f+

(
ξ l,n

i,t

)
f−

(
ξ l,n

i,t

)
]
.

We can thus approximate the update in the limit of rapid and infinitesimally weak observations using the Donsker Invariance
Principle [34]

�yi,t ≈ ±μ�t +
√

�t (ρ1−c,�t (t )η1−c + ρc,�t (t )ηc),

033020-10



IMPACT OF CORRELATED INFORMATION ON … PHYSICAL REVIEW RESEARCH 5, 033020 (2023)

where ηc and η1−c are random variables with standard normal
distributions, and

±μ = 1

�t
Eξ

[
log

f+(ξi,t )

f−(ξi,t )

∣∣∣∣H±
]
,

ρ2
1−c,�t (t ) = (1 − c)

�t
Varξ

[
log

f+(ξi,t )

f−(ξi,t )

∣∣∣∣H±
]
,

ρ2
c,�t (t ) = c

�t
Varξ

[
log

f+(ξi,t )

f−(ξi,t )

∣∣∣∣H±
]
. (C3)

The drift h�t and the variances ρ2
c,�t , ρ2

1−c,�t will diverge
unless f±(ξ ) are properly scaled in the �t → 0 limit.

Taking �t → 0 gives

dy = ±μdt + ρ1−c dWi + ρc dWc, (C4)

where

±μ = lim
�t→0

h�t (t ) = Eξ

[
log

f+(ξ )

f−(ξ )

∣∣∣∣H±
]
,

ρ2
c (t ) = lim

�t→0
ρ2

c,�t (t ) = c Varξ

[
log

f+(ξ )

f−(ξ )

∣∣∣∣H±
]
,

ρ2
1−c(t ) = lim

�t→0
ρ2

c,�t (t ) = (1 − c) Varξ

[
log

f+(ξ )

f−(ξ )

∣∣∣∣H±
]
.

We note that dWi corresponds to private noise, which is
generated independently for each agent. The term dWc is
common to all agents.

APPENDIX D: EXTENDING THE ANALYSIS OF THE
DISCRETE MODEL TO MORE THAN TWO AGENTS

Accuracy of the first decider dips even lower when consid-
ering more than two agents N > 2 [see Fig. 2(b)]. To explain
this more general observation, we extend our two-agent analy-
sis. We denote the decision of agent j ∈ {1, . . . , N} by dj and
the corresponding decision time by Tj . The probability that
the first decider chooses H+ conditioned on the true state is
given by

P±(dFD = H+) =
N∑

j=1

P±(FD = j|d j = H+)P±(d j = H+).

Leveraging exchange symmetry of distinct agents and defin-
ing T = (T1, . . . , TN ) ∈ NN (the vector of decision times) and
T = min j Tj (the time of the first decision), then

P±(dFD = H+) = NP±(d1 = H+)
∑

t∈NN

P±(FD = 1|T = t,

d1 = H+)P±(T = t|d1 = H+), (D1)

where the first term in the sum vanishes if t1 > min1� j�N t j .
On the other hand, if t1 = min1� j�N t j , the conditional prob-
ability that agent 1 is chosen as the first decider depends on
the number of indices j for which t j = t1, i.e., the number
of agents who simultaneously decide at the time of the first
decision. Let nFD(t ) denote the number of these first deciders.
Overall, we have

P±(FD = 1|T = t, d1 = H+)

=
{

0, t1 > min1� j�N t j,

1/nFD(t ), t1 = min1� j�N t j .

Thus, we can turn the second term within the sum from
Eq. (D1) into an additional sum over the count of agents
deciding at the first decision time:

P±(dFD = H+) = NP±(d1 = H+)
∑
t1∈N

N∑
k=1

1

k
P±

× (t1 = T1 = T, nFD(T) = k|d1 = H+).

As before, we write the LLR as a sum of two terms, one given
by the LLR of a randomly selected agent (agent 1) choosing
H+, LLR(d1 = H+) = log[P+(d1 = H+)]/P−(d1 = H+) =
θ , and a second term involving conditional probabilities that
the randomly selected agent is the first decider,

LLR(dFD = H+) = LLR(d1 = H+)

+ LLR(FD = 1|d1 = H+),

where

LLR(FD = 1|d1 = H+) = log

∑
t1∈N

∑N
k=1

1
k P+(t1=T1 = T, nFD(T)=k|d1=H+)∑

t1∈N
∑N

k=1
1
k P−(t1 = T1=T, nFD(T)=k|d1=H+)

.

This term has the same form as in the case of two agents
and is negative for 0 < c < 1 for the same reason: Common
observations are likely to be in agreement with the decision of
the first decider. However, when the first decider is wrong, in-
dependent observations of the other observers are more likely
to point away from the first decision threshold than when the
first decision is correct. Thus, the first decider is less likely to

be correct than a randomly selected agent when 0 < c < 1, in
agreement with simulation results. Moreover, the difference
between the numerator and denominator grows with the num-
ber of agents, reflecting the additional information provided
by having even more undecided agents [Fig. 2(b)]. Other
agents will make observations countering the first decision
when it is incorrect, and consistent with it when it is correct.
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