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DELAY-INDUCED UNCERTAINTY FOR A PARADIGMATIC
GLUCOSE-INSULIN MODEL

BHARCAV KARAMCHED?!, GEORGE HRIPCSAK?, DAVID ALBERS®*?, AND WILLIAM OTT**

ABSTRACT. Medical practice in the intensive care unit is based on the supposition that physio-
logical systems such as the human glucose-insulin system are predictable. We demonstrate that
delay within the glucose-insulin system can induce sustained temporal chaos, rendering the system
unpredictable. Specifically, we exhibit such chaos for the Ultradian glucose-insulin model. This
well-validated, finite-dimensional model represents feedback delay as a three-stage filter. Using the
theory of rank one maps from smooth dynamical systems, we precisely explain the nature of the
resulting delay-induced uncertainty (DIU). We develop a recipe one may use to diagnose DIU in
a general oscillatory dynamical system. For infinite-dimensional delay systems, no analog of the
theory of rank one maps exists. Nevertheless, we show that the geometric principles encoded in our
DIU recipe apply to such systems by exhibiting sustained temporal chaos for a linear shear flow.
Our results are potentially broadly applicable because delay is ubiquitous throughout mathematical

physiology.

We introduce a novel route through which delay causes oscillatory dynamical sys-
tems to exhibit sustained temporal chaos. We precisely explain the nature of the re-
sulting delay-induced uncertainty (DIU). We show that DIU occurs for an archetypal
physiological model, the Ultradian glucose-insulin model. This observation suggests
that DIU may profoundly affect clinical medical care, including glycemic management
in the intensive care unit. DIU may be relevant throughout biomedicine because de-
lay is ubiquitous in physiological systems. Developing DIU detection methods and
assessing the impact of DIU on data assimilation techniques will be important future
research directions. Our work poses new mathematical questions at the interface of
ergodic theory and infinite-dimensional delay dynamical systems.

1. INTRODUCTION

Delay can significantly impact the dynamics of physiological systems at multiple scales. At the
level of genetic regulatory networks, distributed delay on the order of minutes results from the tran-
scriptional, translational, and post-translational steps that result in the production of functional
regulator proteins. Such delay can accelerate signaling within feedforward architectures [16], alter
the statistics of noise-induced switching phenomena [13,19], and produce oscillations in synthetic
genetic circuits [32]. This paper is about a novel route through which delay can cause sustained
temporal chaos within concrete dynamical systems of interest in physiology and biomedicine. We
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call the resulting chaos delay-induced uncertainty (DIU). We believe that DIU has profound im-
plications for oscillations that arise in systems physiology, especially the ultradian glucose-insulin
oscillation observed within human endocrine physiology.

Clinical and laboratory practice throughout biochemistry, physiology, and medicine proceed from
the assumption that the dynamics of measured quantities are not chaotic. For instance, a clinician
administers medication to a patient based on the belief that the medical intervention will not
induce an unexpectedly erratic response. While chaos has been observed in some physiological
models [1,10, 11,22, 25], DIU in physiology is not yet well-understood by mathematicians, nor is
its significance known to clinicians. It is vital to uncover the mechanisms that produce DIU and
develop precise mathematical characterizations of the resulting dynamics. It is vital to assess the
impact of DIU on data assimilation and clinical practice. In this work, we uncover a route to DIU
for oscillatory dynamical systems.

We formulate a general recipe for the emergence of DIU in damped, driven oscillatory systems
and then focus on the ultradian glucose-insulin oscillation. The recipe consists of three ingredients.
First, delay renders the unforced dynamical system excitable. For the damped, driven oscillators
we consider in this paper, delay produces a weakly stable limit cycle. This can happen, for instance,
via a delay-induced supercritical Hopf bifurcation [6,17,30,43-45]. Second, the unforced system
possesses intrinsic shear. For damped, driven oscillators, shear quantifies velocity gradients near
the limit cycle. Third, the forcing drive interacts with the shear to stretch and fold the phase space.
This interaction creates hyperbolicity in the dynamics and produces sustained temporal chaos. The
forcing drive does not overwhelm the intrinsic dynamics. On the contrary, it interacts subtly with
intrinsic shear to produce DIU.

We perform a number of experiments that show DIU emergence for an archetypal physiological
model, the Ultradian glucose-insulin model [3,9,18,34]. The Ultradian model has been constructed
to explain ultradian oscillations using a minimal number of components. It includes compartments
for insterstitial and plasma insulin, one glucose compartment, several feedback mechanisms that
represent insulin-mediated glucose regulation by the pancreas, and hepatic responses. Delayed
regulatory feedback between insulin secretion and glucose released by the liver produces the oscil-
lation. The Ultradian model has been used to accurately describe and predict glucose dynamics in
humans [4]. It therefore provides an ideal setting for the investigation of DIU.

The presence of DIU in glucose-insulin dynamics may have profound implications for clinical care
in the intensive care unit (ICU), where glucose and insulin treatments (external forcing drives) are
central to glycemic management. More generally, DIU is potentially relevant for any physiological
system wherein delayed regulatory feedback controls try to maintain healthy homeostasis. Exam-
ples include pulmonary and respiratory dynamics [25,31], cardiac dynamics [7], female endocrine
dynamics [12,37], and neurological dynamics [8, 14, 33], to name but a few. Indeed, the use of
mathematical physiology within medicine has broad potential [5,47].

The Ultradian model is finite-dimensional because delayed regulatory feedback appears in the
form of a three-stage filter. Consequently, we use the theory of nonuniformly hyperbolic dynamical
systems and specifically the theory of rank one maps [39,41,42] to precisely characterize DIU in
the Ultradian system. No theory of rank one maps for infinite-dimensional delay systems currently
exists. This suggests important open questions: Do infinite-dimensional delay systems (delay dif-
ferential equations) produce DIU? How do we rigorously characterize DIU in this context? We
begin to answer the first of these questions here by showing numerically that DIU emerges in a
delay variant of the linear shear flow model first studied by Zaslavsky [46] and then by Lin and
Young [23].

We conclude the paper by discussing open mathematical questions inspired by DIU. Further, we
assess the potential impact of DIU on biomedicine and clinical practice.
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Figure 1. Schematic of the Ultradian model of glucose-insulin dynamics.

2. THE ULTRADIAN MODEL

We describe the Ultradian glucose-insulin model [9, 18, 34] as well as the external forcing drives
that produce DIU.

The Ultradian model is a compartment model with three state variables: plasma glucose (G),
plasma insulin (/,), and interstitial insulin (I;). See Fig. 1 for the model schematic. These three
state variables are coupled to a three-stage linear delay filter, producing a 6-dimensional phase
space. The Ultradian model is particularly popular because it is the simplest physiological model
that captures the main features of glucose-insulin oscillations [9,34] and provides a mechanistic
description of the cause of the oscillations. The model includes two major negative feedback loops
describing effects of insulin on glucose use and glucose production. Both loops include glucose-based
stimulation of insulin secretion.

Oscillations in the Ultradian system depend on (i) a time delay of 30-45 minutes for the effect of
insulin on glucose production and (ii) the slow effect of insulin on glucose use arising from insulin
being in two distinct compartments. We focus on the former in this paper. Note that the Ultradian
model includes explicit physiological delay, but the system is finite-dimensional because the delay
assumes the form of a three-stage linear filter.

The full model is given by
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where f1(G) represents the rate of insulin production, fo(G) represents insulin-independent glu-
cose use, f3(I;)G represents insulin-dependent glucose use, and fy4(hs) represents delayed insulin-
dependent glucose use. The functional forms of these are
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See Table 1 for parameter descriptions and nominal parameter values.
For our DIU experiments, we first consider an idealized nutritional driver I (¢) that includes a
basal signal and pulsatile kicks. The idealized nutritional driver is given by

oo
(2) IG(t) =1+ Z Ané(t - Tn)v

n=0
where Iy is a basal nutritional input for the system, T, is the time of the nth feeding, and A,
is the amount of carbohydrate in that meal. The signal I;(t) represents the external forcing in
the Ultradian model. The form of I5(t) in Eq. (2) produces the following dynamics: Between
two consecutive kicks (T,,—1 < t < T,), Ultradian dynamics evolve according to system (1) with
Ig(t) = Iy. At the time T, of meal n, the glucose state variable, G, undergoes the instantaneous
change G — G + A,. We demonstrate the emergence of DIU for both fixed and random kick
amplitudes (A4,,)72, and inter-kick times (7,41 — 75,)5% .

In reality, meals produce glucose kicks that are temporally localized but not instantaneous. Our
DIU results for the idealized nutritional driver strongly predict DIU emergence for the complex
external forcing drives encountered in the intensive care unit. To support this claim, we show that
DIU remains present when we replace the d-kicks in Eq. (2) with square pulses of duration 30
minutes that arrive at 8 am, noon, and 6 pm.

with
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3. DELAY-INDUCED UNCERTAINTY FOR THE ULTRADIAN MODEL

We first formulate a general DIU recipe for damped, driven oscillatory systems. This recipe
explains the origins of sustained temporal chaos for the Ultradian model. We then present a
suite of numerical experiments that demonstrate the presence and robustness of DIU. We conclude
Section 3 by providing a full dynamical profile of DIU and using ideas from smooth ergodic theory
to support our numerical findings.

3.1. DIU recipe. Our route to DIU for damped, driven oscillatory systems involves the following
three ingredients.

(U1l) Delay-induced excitability. Delay renders the unforced (intrinsic) dynamical system
excitable by producing a weakly stable limit cycle. As we will see, delay in the Ultradian
model produces a limit cycle via a supercritical Hopf bifurcation.

(U2) Intrinsic shear. Shear refers to significant velocity gradients in a tubular neighbor-
hood of the limit cycle. Atmospheric wind shear provides a good mental picture of the
phenomenon.

(U3) External forcing allows shear to act. External forcing allows the shear to stretch and
fold the phase space, thereby creating hyperbolicity in the dynamics.

a no shear

time

Figure 2. Kick-relaxation dynamics of the Ultradian model with pulsatile forc-
ing. When the system is kicked, the limit cycle (red circle) deforms (black curve). Before
the next kick, the system relaxes toward the limit cycle. (a) In the absence of shear, the
kicked limit cycle quickly relaxes. The phase space does not stretch and fold. (b) When
shear is strong, the kicked limit cycle stretches and folds during the relaxation phase (assum-
ing the time between kicks is long enough to allow stretch and fold geometry to manifest).
The kick-relaxation cycle produces sustained temporal chaos.

Figure 2 illustrates the geometric mechanism behind the emergence of sustained temporal chaos.
Since our glucose forcing signals (2) are pulsatile, the evolution of the Ultradian system decomposes
into windows of relaxation punctuated by kicks. The amount of shear near the limit cycle determines
how the kick-relaxation cycle acts on phase space. In the absence of shear (Figure 2a), the kicked
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limit cycle would calmly relax before the next kick. The phase space would not stretch and fold in
this case. When shear is strong, the phase space would stretch and fold between kicks (Figure 2b),
producing sustained temporal chaos.

Importantly, DIU is not a phenomenon wherein the external forcing simply overwhelms the
intrinsic dynamics. On the contrary, forcing amplitudes can be quite small. Forcing acts as an
amplifier in our DIU recipe, amplifying the impact of intrinsic shear to produce rich, complex
dynamics.

3.2. Simulation results for idealized pulsatile forcing. We deploy our DIU recipe to establish
DIU emergence in the Ultradian model with glucose input signal (2). We show that DIU emerges
for both constant and random kick amplitudes and inter-kick times. The results of this section
are numerical in nature for the following reason. Since the Ultradian model is finite-dimensional,
the analysis of kicked limit cycles for nonlinear systems in [26,40] provides rigorous mathematical
support for our simulation results. This analysis leverages the theory of rank one maps [39,41,42]
to provide a dynamical profile of DIU. This profile includes the existence of a strange attractor.
However, the theory of rank one maps has not yet been extended to treat random inter-kick times
or random kick amplitudes. Even when both kick amplitude and inter-kick time are held constant
(A, = A and T,, = nT for all n), the current theory of rank one maps cannot tell us if a strange
attractor exists for specific values of A and T [26,40]. Rather, the rigorous applications of the
theory developed thus far prove the existence of strange attractors for parameter sets of positive
Lebesgue measure. Moreover, the theory of [26,40] is an asymptotic theory whereas our numerical
experiments take place in a practical parameter regime.

We therefore analyze the Ultradian model numerically and use the maximal Lyapunov exponent,
Amax, as a DIU diagnostic: Apax > 0 indicates DIU, while Apax < 0 indicates that DIU is absent.

Parameter selection. Excluding the nutritional driver, we set all Ultradian model parameters
to the values in Table 1 for our simulations. For the nutritional driver, we set the basal rate Iy to
zero. We are therefore free only to tune the delay ¢4 and choose models for the kick amplitudes 4,
and the inter-kick times T;, 11 — T,.

DIU recipe for the Ultradian model. The emergence of a limit cycle in system (1) as the delay
tq increases invokes recipe (U1)—(U3) for the presence of DIU in the Ultradian system.

(U1). Consider the unforced version of system (1), obtained by removing I(¢). For a variety of
time delays, Figure 3 shows glucose timeseries (top row) and two-dimensional projections of phase
space trajectories (bottom row) generated by the unforced Ultradian system. We see that a stable
equilibrium bifurcates into a limit cycle as the system undergoes a supercritical Hopf bifurcation
at a delay value t}) satisfying 8 < ¢}, < 12. The presence of the limit cycle implies excitability.

(U2) and (U3). We claim that limit cycles subjected to pulsatile forcing drives generically satisfy
these two recipe ingredients. The geometric ideas of Wang and Young [40] and the quantitative anal-
ysis of Ott and Stenlund [26] support this claim for finite-dimensional nonlinear systems. For (U2),
shear can be understood geometrically by examining the shape of the strong stable foliation in a
tubular neighborhood of the limit cycle [40]. Ott and Stenlund [26] quantify shear by defining a
shear integral that represents the accumulation of shear as one traverses the limit cycle.

For (U3), the external forcing must interact with the shear in order to produce sustained temporal
chaos. We claim that this happens for generic pulsatile forcing drives. To support this claim, Wang
and Young prove that given a C* flow on a Riemannian manifold that admits a hyperbolic limit
cycle, periodic kicks will produce strange attractors for an open set of C? kick functions (Theorem 1
of [40]). Ott and Stenlund [26] define a function that quantifies the forcing-shear interaction and
assume that this function is Morse in their main theorem on the existence of strange attractors.
They conjecture that this assumption will hold for a generic kick-generating vector field, both
in terms of topological genericity and prevalence. See Remark 2.1 of [26] for a discussion of the
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Figure 3. For the unforced Ultradian model, a supercritical Hopf bifurcation produces a
limit cycle as delay t4 increases. Top row: Glucose timeseries for (a) tg = 2 min, (b) t4 =8
min, (c¢) tg = 12 min, and (d) tq = 20 min. Bottom row: Projection of a phase space
trajectory onto glucose-plasma insulin space for (e) tq = 2 min, (f) t; = 8 min, (g) tq = 12
min, and (h) ¢4 = 20 min. Other parameter values are given in Table 1.

conjecture and [27] for information about prevalence. Note that for the Ultradian model, the
kicks provided by the nutritional driver have no spatial variation with respect to the original state
variables. Such variation should be present, however, for the coordinate system near the limit cycle
developed in [26].

The maximal Lyapunov exponent as a diagnostic tool. We now present the numerical
experiments that establish the presence of DIU for the Ultradian model. We use the maximal
Lyapunov exponent as a DIU diagnostic: Apnax > 0 indicates DIU, while Apnax < 0 indicates its
absence. We compute the maximal Lyapunov exponent by solving system (1) as follows. Dur-
ing the relaxation intervals (7,,—1,7,) between kicks, we integrate the differential equations using
MATLAB’s ode23s stiff solver. At kick times T,,, we pause the differential equation solver and
apply the diffeomorphism of phase space induced by the kick G — G + A,,. We compute Apax by
completing 10° kick-relaxation cycles. Our maximal Lyapunov exponent therefore quantifies the
amount of expansion per kick-relaxation cycle.

Constant kick amplitude, periodic or Poissonian kicks. For our first set of experiments,
we choose a value of the delay t4 such that the limit cycle is present in the unforced system, and
then hold t4 fixed. We consider kicks of constant intensity, A,, = A for all n. Kick times are either
periodic, T;,, = nT for all n, or Poissonian. In the Poissonian case, the inter-kick times T}, 11 — T},
are independent and exponentially distributed with mean 7. We show that DIU emerges even for
these relatively simple forms of the nutritional driver (2) by examining how the maximal Lyapunov
exponent depends on A and 7.

We compute the maximal Lyapunov exponent as follows. For simulations involving periodic kicks
(see Figs. 4a-c, 5a-c), we track two solutions to system (1), initially separated by dy = 10~8. Think
of one of these solutions as the base solution and the other as a secondary, perturbative solution.
After the first kick-relaxation cycle, we compute the separation d; between the solutions at time
T and store the quantity log(d;/dp) in a vector. We then renormalize by moving the secondary
orbit toward the base orbit so that the distance between the two resets to dg. We proceed in this



8 DELAY-INDUCED UNCERTAINTY FOR A PARADIGMATIC GLUCOSE-INSULIN MODEL

manner for 10° kick-relaxation cycles. This produces a vector containing 105 values of log(dy /dp)-
Averaging over this vector produces Apax, the maximal Lyapunov exponent.

For simulations involving Poissonian kicks (see Figs. 4d-f, 5d-f), the maximal Lyapunov exponent
is a random variable, as it depends a priori on the random inter-kick times. To compute it, we first
sample 10° inter-kick times from the exponential distribution with mean 7. These samples produce
a single realization of the stochastic process. We compute the maximal Lyapunov exponent for this
realization by proceeding as we did in the case of periodic kicks. That is, we compute log(dy/dp)
following each kick-relaxation cycle and then average. Finally, we average the realization-dependent
maximal Lyapunov exponent over 10° realizations of the Poisson process. Abusing notation slightly,
we call this average Apax.
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Figure 4. Maximal Lyapunov exponent in the Ultradian model as a function
of kick timing. Positive Apay indicates the presence of DIU. (a)-(c) For periodic kicks,
plots of Apax versus the inter-kick time T" for several fixed values of kick amplitude A. (a)
A =2mg/dL. (b) A =10 mg/dL. (c) A =50 mg/dL. (d)-(f) For Poissonian kicks, plots of
Amax versus mean inter-kick time 7T for several fixed values of kick amplitude A. (d) A =2
mg/dL. (e) A =10 mg/dL. (f) A =50 mg/dL. Other parameter values are as in Table 1.

Figures 4a-c and 5a-c display maximal Lyapunov exponent results for the case of constant kick
amplitude and periodic kicks. Here, Ap.x is a function of the kick amplitude A and the inter-kick
time T'.

For three different fixed values of A, Apax becomes positive as T' increases, indicating the onset
of DIU (Figure 4a-c). This is consistent with the intuition from Figure 2: Larger values of T" allow
more time for the phase space to stretch and fold between kicks. The maximal Lyapunov exponent
depends on 7' in a particularly interesting way when A = 50 mg/dL (Figure 4c). Here, Apax < 0 for
small values of T', indicating that DIU is absent and suggesting that the time-T" map of the system
possesses an attractor that is diffeomorphic to the limit cycle present in the unforced Ultradian
system. By contrast, Amax > 0 for large values of T', indicating the presence of DIU and suggesting
that the time-T map of the system possesses a strange attractor. The inset in Figure 4b shows that
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Figure 5. Maximal Lyapunov exponent in the Ultradian model as a function of
kick amplitude. Positive Apax indicates the presence of DIU. (a)-(c) For periodic kicks,
plots of Anax as a function of kick amplitude for several different values of inter-kick time
T. (a) T =5 min. (b) T =20 min. (¢) 7T"= 100 min. (d)-(f) For Poissonian kicks, plots
of Amax as a function of kick amplitude for several different values of mean inter-kick time
T. (d) T =5 min. (e) T =20 min. (f) T = 100 min. Other parameter values are as in
Table 1.

Amax fluctuates around zero for moderately large values of T'. This suggests that the time-T" map
of the system possesses horseshoes (transient chaos).

In Figure 5a-c, we compute Apnax as a function of A for different fixed values of T. When T is
small (7" = 5 min), the maximal Lyapunov exponent is negative for all of the values of A we have
simulated, indicating that DIU is absent, robustly so with respect to A, when T is small (Figure 5a).
By contrast, when 7T is large (7" = 100 min), Apax is positive for all of the values of A we have
tested, indicating that DIU is present even when A is small (Figure 5¢). We observe a transition
from quiescence to DIU as A increases when T is moderately large (7' = 20 min, Figure 5b).

Figures 4d-f and 5d-f display maximal Lyapunov exponent results for the case of constant kick
amplitude and Poissonian kicks. Here, Ay.x > 0 for most of the kick amplitudes A and mean inter-
kick times T we tested, indicating robust presence of DIU. Note that when A is fixed at A = 50
mg/dL, DIU onset occurs significantly earlier in the Poissonian case than in the periodic case as T
increases (Figure 4c.f).

Uniformly distributed kick amplitudes, periodic kicks. We claim that DIU emergence is
robust - DIU will emerge regardless of the particular shape of the pulsatile forcing. Our remaining
experiments with the Ultradian model support this claim. For the next set of experiments, we
make the (more realistic) assumption that kick amplitudes are random, rather than constant. In
particular, we assume the kick amplitudes A, are independent and uniformly distributed, while the
kicks are periodic in time with inter-kick time 7. Figure 6a shows the distribution of Ay as a
function of 7" when the kick amplitudes are drawn from the uniform distribution on [45,55]. When
T is small, the distribution of An.x is essentially a Dirac delta at a negative value. Interestingly,
at the moment E[Anax]| crosses zero, the variance of Apax immediately becomes positive, and
continues to grow as 7' increases.
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Figure 6. The distribution of A,,.x for the Ultradian model when the kicks are
independent and uniformly distributed. Once again we see evidence of DIU. (a) We
fix the kick amplitude distribution A ~ U[45, 55], so that (A) = 50 mg/dL and Var[A] = 8.3.
For T values that produce Ap.x < 0 in Figure 4c, the distribution of A,.x resembles a Dirac
delta. However, for T values that produce Ana.x > 0 in Figure 4c, a distribution of values
emerges for Ap.x that broadens as T grows. (b) We fix T'= 40 min, fix (A) = 50 mg/dL,
and plot the distribution of Apax as a function of Var[A].

For our second experiment with uniformly distributed kick amplitudes, we fix T' at T" = 40 min,
fix the mean of the kick amplitude distribution at 50 mg/dL, and examine how the distribution
of Apnax varies with the variance of the kick amplitude distribution. Notice that T = 40 min is
beyond the critical value at which we see an abrupt behavioral change in Figure 6a. Interestingly,
the overall width of the Ap.x distribution seems to be insensitive to kick amplitude variance, yet
we see subtle variation at fine scales (Figure 6b).

A meal-like carbohydrate input signal. For our final experiment with the Ultradian model, we
replace the sum of §-pulses in the nutritional driver (2) with square pulses of height A that have a
duration of 30 minutes and begin daily at 8 am, noon, and 6 pm. Figure 7a shows that DIU quickly
emerges as A increases. For values of A in the DIU regime, the corresponding glucose timeseries
behave in an interesting way (Figure 7b-d). When A = 100, for instance, the glucose timeseries
contains windows with erratic behavior and windows wherein the glucose signal is nearly constant.
Such behavior would potentially confuse clinicians and can complicate data-based detection and
interpretation of DIU.

3.3. Dynamical profile of DIU for the Ultradian model. Since the Ultradian model is finite-
dimensional, the analysis of kicked limit cycles for nonlinear systems in [26,40] supports our numer-
ical findings and leverages the theory of rank one maps [39,41,42] to provide a dynamical profile
of DIU. We associate DIU with the existence of a strange attractor that supports a unique ergodic
Sinai-Ruelle-Bowen measure. The system has a positive Lyapunov exponent (sustained temporal
chaos) and possesses rich statistical properties. These include a dynamical version of the central
limit theorem, exponential decay of correlations, and a large deviation principle.

Figure 8 illustrates how DIU impacts Ultradian dynamics. Here, we simulate the Ultradian model
with delay t; = 12 min, a value for which the unforced system possesses a limit cycle. We drive
the system using nutritional driver (2) with periodic glucose kicks of constant amplitude A = 10
mg/dL. We select a small value of the inter-kick time for which DIU is absent (7" = 20 min, left
column) and a larger value for which DIU is present (7" = 200 min, right column).

The first two rows of Figure 8 show representative glucose timeseries and corresponding empirical
glucose distributions. When DIU is absent, glucose levels oscillate regularly as expected, but
interestingly the empirical glucose distribution is bimodal. By contrast, the erratic behavior of the
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Figure 7. Robust DIU emergence for a meal-like carbohydrate signal. We replace
the sum of d-pulses in the nutritional driver (2) with square pulses of height A that have a
duration of 30 minutes and begin daily at 8 am, noon, and 6 pm. (a) The top Lyapunov
exponent is positive even for small values of A, indicating robust emergence of DIU for this
forcing signal. (b)-(d) Sample glucose timeseries for three values of A in the DIU regime.

glucose timeseries in the presence of DIU reflects the chaos in the system. Notice that the empirical
distribution in the DIU case appears to be approximately Gaussian. This observation is consistent
with the results on Sinai-Ruelle-Bowen measures for general kicked limit cycles in [26,40], where
scalar observables are shown to satisfy a dynamical version of the central limit theorem.

Figure 8d,e suggests that the impact of DIU on clinical practice will be subtle and complex. When
employing a single-orbit perspective on dynamics, sustained temporal chaos renders rational medical
intervention extremely difficult. If only the statistical behavior of observables of the dynamics
(such as glucose level) matters in a particular setting, then DIU may be beneficial, since the results
of [26,40] suggest that observables of Ultradian dynamics behave with a high level of statistical
regularity.

We plot the attractors of the time-T" map generated by the Ultradian system in Figure 8c,f.
When DIU is absent, the attractor is diffeomorphic to the limit cycle of the unforced system. In
the presence of DIU, we observe a strange attractor with intricate geometry. These results are
consistent with the rigorous theory of [26,40].

4. DELAY-INDUCED UNCERTAINTY FOR DELAY LINEAR SHEAR FLOW

There exists no theory of rank one maps for infinite-dimensional delay systems at this time.
Nevertheless, the geometric principles behind our DIU recipe remain valid for infinite-dimensional
dynamics. We believe that it will be possible to develop a rigorous DIU theory for delay differen-
tial equations (DDEs). Such a theory would have considerable value given the ubiquity of DDE
modeling in mathematical physiology.

We show that it is possible for delay differential equations to produce DIU by demonstrating
that even a simple DDE does so.

4.1. Delay linear shear flow. The dynamics take place on the cylinder S' x R. Writing 4 for
the S'-coordinate and z for the R-coordinate, delay linear shear flow is generated by the delay
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Figure 8. Dynamical profile of Ultradian dynamics in the absence (left column)
and presence (right column) of DIU. (a) Glucose levels oscillate in a regular manner.
(b) The empirical glucose distribution associated with the timeseries from (a) is bimodal.
(c) The time-T map generated by the Ultradian system possesses an attractor that is dif-
feomorphic to the limit cycle of the unforced system. (d) Glucose levels evolve erratically.
(e) The empirical glucose distribution associated with the timeseries from (d) is unimodal
and appears to be approximately Gaussian but with finite support. (f) The time-7" map
generated by the Ultradian system possesses a strange attractor. Left column: T = 20 min.
Right column: T = 200 min. All panels: t; = 12 min, A = 10 mg/dL, and other parameter
values are as in Table 1.

differential equations
(3a) i(t) = =Xzt —7) + A®(0) Y _ 6(t — nT),
n=0

(3b) 0=1+o02.

System (3) is infinite-dimensional due to the delay 7: One must specify an initial history h :
[~7,0] — S! x R in order to propagate the dynamics forward. The final term on the right side
of Eq. (3a) represents periodic pulsatile kicks. Here A > 0 is the kick amplitude, 7" > 0 is the
inter-kick time, ® : S' — R describes the kick profile, and 6 is the Dirac delta. The Dirac delta
has the following interpretation: At each nonnegative integer multiple of T, each point in S' x R
instantaneously moves from (0, z) to (6, z + A®(0)). Between kicks, the dynamics are governed by
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the unforced delay equations
(4a) 2(t) = =Az(t — 1),
(4b) )=1+o0z.

Together with delay 7, the parameters A > 0 and o0 € R shape the dynamics of the unforced
dynamical system.

Evidence for DIU. We argue that DIU emerges when 7 > 0. Since no theory of rank one maps
exists yet for infinite-dimensional delay systems, we compute the top Lyapunov exponent A ax
numerically and use Ay as a DIU diagnostic. That is, DIU is present if Apax > 0 and absent if
Amax < 0. We invoke the (U1)—(U3) route to DIU and display our numerical evidence in Figure 9.

(U1). Delay induces excitability in system (3) because the stability of the limit cycle weakens
as 7 increases. This is because the strength of stability of the zero solution to the scalar delay
differential equation

2(t) = =Xz(t—71)
is determined by the (complex) solutions of the characteristic equation
v+ e 7T =0.

(U2). The angular velocity gradient parameter o in Eq. (4b) quantifies shear in the unforced
system.

(U3). Here there exists a subtle difference between the delay (7 > 0) case and the delay-free
(1 = 0) case. In the delay-free case, the kick profile ® needs to be nonconstant in order to create
the z-variability that leads to stretching and folding of the phase space. This requirement can be
dropped in the delay case. Here, the history h that serves as initial data for system (3) can provide
z-variability, so DIU can emerge even if ® is a constant function. Indeed, we demonstrate this in
Figure 9.

a , b »
1 1
g g
3 3
< <
0 0
7=02 T=3
A 1
0 T 12 0 T

Figure 9. DIU for delay linear shear flow (3). (a) When delay 7 is small, the top
Lyapunov exponent Ay, is negative over the tested range of inter-kick times 7. DIU has
not emerged when delay is small. (b) When delay is substantial, DIU emerges when Apax
transitions from negative to positive. (c) Heatmap illustrating the sign of A.x as a function
of the delay 7 and the inter-kick time 7. Red indicates that Ap.x > 0; blue indicates that
Anax < 0. The sign of Ap.x depends sensitively on 7 and T in the black region. Here,
0=3,A=0.1,A=0.1,and ® = 1. For t € [—7,0], we take h(t) = (0(t), 2(t)) = (0,¢?).

The delay-free case 7 = 0. For the sake of completeness, we summarize what is known about
this finite-dimensional system. In the absence of delay, linear shear flow assumes the form

(52) A(t) = —\2(t) + AD(0) fj 5(t — nT),
n=0

(5b) 0=1+o0z



14 DELAY-INDUCED UNCERTAINTY FOR A PARADIGMATIC GLUCOSE-INSULIN MODEL

This deceptively simple system has been studied by mathematical physicists such as Zaslavsky [46]
and by dynamicists such as Lin and Young [23]. Without forcing (A = 0), the set Q = {(6,2) : z =
0} is a limit cycle of system (5) for all values of the contraction parameter A > 0. This limit cycle
is weakly stable if A\ is small. The dynamics of linear shear flow depend on the size and shape of
the pulsatile kicks, as well as how trajectories relax to the limit cycle between kicks.

The angular velocity gradient parameter o quantifies the shear in system (5). This parameter
links with A and A to form the hyperbolicity factor

Ao (kick amplitude) - (shear)

A (contraction)

The hyperbolicity factor governs the dynamics of system (5). We express this through the behavior
of the time-T map Fr : S! x R — S! x R generated by linear shear flow (the result of one kick
followed by one relaxation cycle).

If % is small, then the kicked system will quickly return to equilibrium after each kick (Fig-
ure 2a). Mathematically, Fr admits an attractor diffeomorphic to S'. However, stretch and fold
geometry emerges when the hyperbolicity factor is large (Figure 2b). Provided the kick profile ® is
not a constant function, each kick creates wave-like variability in the z-direction (Figure 2b, first
image). If the relaxation time T is sizable, shear will then cause the waves to stretch and fold
(Figure 2b, second image). Chaotic behavior consequently emerges when the hyperbolicity factor
is large.

Mathematically, Fr admits a strange attractor for a set of T' values of positive Lebesgue measure,
provided the hyperbolicity factor is sufficiently large and the kick profile ® is not a constant function.
For such values of T', Fr is genuinely nonuniformly hyperbolic. In particular, it exhibits a positive
Lyapunov exponent (the chaos is sustained in time). The strange attractor supports a unique
ergodic Sinai-Ruelle-Bowen measure. This measure describes the asymptotic distribution of almost
every orbit in the basin of attraction (the chaos is observable). The Sinai-Ruelle-Bowen measure
possesses strong statistical properties: The system obeys a dynamical version of the central limit
theorem, correlations for Holder observables decay exponentially, and a large deviations principle
holds.

Found in [40], precise statements and proofs of these rigorous results for linear shear flow rely on
the theory of rank one maps. Developed by Wang and Young [39,41,42], rank one theory provides
a platform for proving the existence of nonuniformly hyperbolic dynamics (sustained, observable
chaos) within concrete systems of interest in the biochemical and physical sciences.

The proofs for linear shear flow involve verifying the hypotheses of the theory of rank one maps.
In particular, Wang and Young [40] analyze a certain ‘infinite relaxation’ 7" — oo limit of Fr.
This procedure produces the singular limit, a parametrized family of circle maps. Rank one theory
links the dynamics of the singular limit to those of Fr. For linear shear flow, the hyperbolicity
factor gives the amount of expansion in the singular limit. Expansion in the singular limit links to
sustained, observable chaos for Fr.

5. DISCUSSION

5.1. Summary. In this paper, we have proposed a novel route by which delay can cause the onset
of sustained temporal chaos in externally forced dynamical systems. We call the resulting chaos
delay-induced uncertainty. We have formulated a recipe that may be used to diagnose the presence
of DIU. The DIU recipe consists of three ingredients: (i) delay induces excitability in the unforced
system, (ii) the unforced system possesses shear, and (iii) the external forcing interacts with the
shear. We have shown that this recipe can transform limit cycles into strange attractors.

Guided by our DIU recipe, we have demonstrated numerically that the Ultradian glucose-insulin
model can produce DIU. DIU emerges for both deterministic and random Dirac-9 forcing, as well
as for meal-like carbohydrate input signals. Our numerical experiments use the largest Lyapunov
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exponent Apnax as a DIU diagnostic: Apax > 0 indicates that DIU is present, while A < 0
indicates that it is absent.

The Ultradian model is finite-dimensional because delay in this model assumes the form of a
three-stage linear filter. Because of this, the theory of rank one maps from smooth ergodic theory
provides a rigorous dynamical profile of DIU for the Ultradian model. No such theory exists for the
infinite-dimensional flows generated by delay differential equations. Nevertheless, we believe that
the mechanisms in our DIU recipe can cause infinite-dimensional delay systems to produce DIU.
We have supported this belief by showing that a delay linear shear flow model produces DIU. This
model allows us to illuminate both the geometry of DIU and how delay leads to DIU onset.

Because many physiological systems oscillate and possess meaningful sources of delay, we believe
DIU is relevant throughout mathematical physiology.

5.2. DIU in clinical medicine: Impact and outlook. The existence of delay-induced uncer-
tainty in the Ultradian model acknowledges and potentially explains the difficulties clinicians face
when managing glucose in the ICU [28,35,38]. Predicting the precise temporal evolution of a chaotic
system is extremely challenging. Recently, artificial intelligence has been touted as a potential so-
lution to problems in health care [36]. Our results imply that artificial intelligence may not be the
solution because glucose-insulin metabolism is not just complicated but actually chaotic. A better
path might be to acknowledge the chaos and approach clinical challenges statistically, estimating
expected variances so that decisions can be based on the distribution of likely outcomes [2].

Better matching of models to real ICU experience may help identify and avoid treatments that
are likely to produce chaotic behavior. For example, our DIU results suggest that smaller, more
frequent insulin doses may be better than larger, less frequent doses. In the language of this pa-
per, the former corresponds to lower kick amplitude and smaller inter-kick time. Note that this
hypothesis is consistent with analysis of impulsive insulin injection models [15,29]. In particu-
lar, Section 3.4 of [15] describes how insulin injection dose and period should be selected so as
to maintain ideal homeostatic glucose levels. For this particular model, smaller doses of insulin
administered more frequently are more efficient and effective. Our work here may provide a general
theoretical geometric foundation for such results.

Practical medicine introduces additional complexity we will analyze in future work, most notably
nonstationarity. In this paper we have analyzed stationary models, meaning that model parameters
do not change over time. In the Ultradian context, we have therefore held the overall health state
of the patient fixed, since the Ultradian model parameters represent overall health state [4]. This
is often not a reasonable assumption for glycemic management in the ICU since the timescales of
medical interventions are relatively fast. On longer timescales over which diseases such as diabetes
affect patient health state, we anticipate that nonstationarity will be a common issue for DIU
analysis in a health-related physiologic setting.

The DIU dynamical profile has two facets. Sustained temporal chaos renders the precise temporal
evolution of individual trajectories extremely difficult to predict. However, dynamical systems may
also be viewed through a statistical lens: How do observables behave statistically? DIU induces
sustained temporal chaos, yet observables exhibit strong statistical regularity. Whether DIU is a
benefit or a hazard therefore depends on context and point of view. We briefly present two explicit
examples to illustrate this point: glycemic management of enterally fed patients in an intensive
care unit and glycemic self-management for a person with type-2 diabetes (T2DM).

In the ICU, enteral feeding induces glycemic oscillations. Clinicians use insulin to keep patient
glucose levels within stable bounds, avoiding deadly hypoglycemia while minimizing hyperglycemia.
They are not particularly interested in the exact temporal evolution of individual glucose orbits.
Clinicians in this context may therefore prefer to have DIU present because of the associated
statistical regularity. Indeed, it may be beneficial to design treatment protocols that deliberately
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induce DIU. DIU induction might reduce glucose variance and therefore positively impact treatment
decisions.

On the other hand, T2DM patients monitor their blood glucose levels at home in order to quantify
activity impact. Here, rational decision-making requires understanding the temporal evolution of
individual glucose trajectories. Glucose readings potentially become uninterpretable when DIU is
present. This would render self-management a nearly impossible task and suggests that DIU may
negatively impact T2DM patients.

Our results set the stage for important future work. We have shown in this paper that the DIU
phenomenon has the potential to confound medical decision-making and observational understand-
ing. Next, we must link DIU to data-driven science. How do we detect DIU using experimental
data? What mechanisms produce DIU, and do these mechanisms possess specific detectable sta-
tistical signatures?

5.3. Directions for future mathematical research. Our work suggests several intriguing math-
ematical problems. Can one develop a general theory of rank one maps that would apply to the
flows on function spaces generated by delay differential equations? There exist two lines of attack.
One could build a theory of rank one maps that applies directly to Banach spaces. Alternatively,
one could combine existing rank one theory with invariant manifold techniques, as Lu, Wang, and
Young have done for supercritical Hopf bifurcations in certain parabolic PDEs [24]. A general the-
ory of rank one maps for delay differential equations would apply to DDE glucose-insulin models
such as the two-delay model introduced in [21] and analyzed in [20]. This theory could be used
to prove the existence of DIU for DDE glucose-insulin models and, more broadly, DDE models
throughout mathematical physiology.

The external forcing signals we have studied here have relatively simple structure. What do more
complex forcing signals produce in the DIU context? For instance, what if the forcing assumes the
form of a continuous-time stochastic process with a jump component, such as Lévy noise?

Nonstationary dynamical systems have received considerable attention over the past fifteen years.
Here, the dynamical model itself varies in time. Glycemic management in the ICU fits naturally
into this setting: Ultradian model parameters likely drift over time as overall patient health state
slowly changes. Moreover, we do not know the statistics of this parameter variability. (If we had
this statistical information, we would be in the setting of random dynamical systems.) Can one
develop DIU theory for nonstationary dynamical systems?

It will be important to deepen the links between DIU and data-driven science. Can one develop
methods to deduce the presence of DIU using experimental data? What impact does DIU have
on data assimilation methods? In particular, how does the fact that the Ultradian model exhibits
DIU impact our ability to fit this model to ICU patient data?

Finally, do there exist additional routes to DIU? What happens when delay acts on multiple
timescales?
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9. NOMINAL PARAMETER VALUES FOR THE ULTRADIAN MODEL

Table 1 lists the parameter values we have used for our DIU experiments. See [4] for information
about this parameter set.

Table 1. Full list of parameters for the Ultradian glucose-insulin model [4]. Note that IIGU
and IDGU denote insulin-independent glucose utilization and insulin-dependent glucose uti-
lization, respectively.

Ultradian model parameters
Name | Nominal Value | Meaning

] Vi \ 3L \ plasma volume \
] Vi \ 11 L \ interstitial volume ‘
] Vy \ 10 L \ glucose space ‘
B 0.2 L min~! exchange rate for insulin between remote and
plasma compartments
tp 6 min time constant for plasma insulin degradation
(via kidney and liver filtering)
t; 100 min time constant for remote insulin degradation
(via muscle and adipose tissue)
tq 12 min delay between plasma insulin and glucose pro-
duction
] R, \ 209 mU min—! \ linear constant affecting insulin secretion \
] ay \ 6.6 \ exponential constant affecting insulin secretion ‘
] Cy \ 300 mg L1 \ exponential constant affecting insulin secretion ‘
] Co \ 144 mg L1 \ exponential constant affecting IIGU \
] Cs \ 100 mg L1 \ linear constant affecting IDGU ‘
] Cy \ 80 mU LT \ factor affecting IDGU ‘
’ Cs \ 26 mU LT \ exponential constant affecting IDGU ‘
] Uy \ 72 mg min ! \ linear constant affecting IIGU ‘
] Uy \ 4 mg min—! \ linear constant affecting IDGU ‘
] Un \ 94 mg min~—! \ linear constant affecting IDGU ‘
] R, \ 180 mg min~! \ linear constant affecting IDGU \
] @ \ 7.5 \ exponential constant affecting IDGU ‘
’ I3 ‘ 1.772 ‘ exponent affecting IDGU ‘
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