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ABSTRACT

Medical practice in the intensive care unit is based on the assumption that physiological systems such as the human glucose–insulin system
are predictable. We demonstrate that delay within the glucose–insulin system can induce sustained temporal chaos, rendering the system
unpredictable. Specifically, we exhibit such chaos for the ultradian glucose–insulin model. This well-validated, finite-dimensional model
represents feedback delay as a three-stage filter. Using the theory of rank one maps from smooth dynamical systems, we precisely explain
the nature of the resulting delay-induced uncertainty (DIU). We develop a framework one may use to diagnose DIU in a general oscillatory
dynamical system. For infinite-dimensional delay systems, no analog of the theory of rank one maps exists. Nevertheless, we show that the
geometric principles encoded in our DIU framework apply to such systems by exhibiting sustained temporal chaos for a linear shear flow.
Our results are potentially broadly applicable because delay is ubiquitous throughout mathematical physiology.

Published under license by AIP Publishing. https://doi.org/10.1063/5.0027682

We introduce a novel route through which delay causes oscilla-
tory dynamical systems to exhibit sustained temporal chaos. We
precisely explain the nature of the resulting delay-induced uncer-
tainty (DIU). We show that DIU occurs for an archetypal physi-
ological model, the ultradian glucose–insulin model. This obser-
vation suggests that DIU may profoundly affect clinical medical
care, including glycemic management in the intensive care unit.
DIU may be relevant throughout biomedicine because delay is
ubiquitous in physiological systems. Developing DIU detection
methods and assessing the impact of DIU on data assimilation
techniques will be important future research directions. Our work
poses new mathematical questions at the interface of ergodic
theory and infinite-dimensional delay dynamical systems.

I. INTRODUCTION

Delay can significantly impact the dynamics of physiologi-
cal systems at multiple scales. At the level of genetic regulatory
networks, distributed delay of the order of minutes results from

the transcriptional, translational, and post-translational steps that
lead to the production of functional regulator proteins. Such delay
can accelerate signaling within feedforward architectures,16 alter
the statistics of noise-induced switching phenomena,13,20 and pro-
duce oscillations in synthetic genetic circuits.34 This paper is about
a novel route through which delay can cause sustained temporal
chaos within concrete dynamical systems of interest in physiology
and biomedicine. We call the resulting chaos delay-induced uncer-
tainty (DIU). We believe that DIU has profound implications for
oscillations that arise in systems physiology, especially the ultra-
dian glucose–insulin oscillation observed within human endocrine
physiology.

Clinical and laboratory practice throughout biochemistry,
physiology, and medicine proceed from the assumption that the
dynamics of measured quantities are not chaotic. For instance, a
clinician administers medication to a patient based on the belief
that the medical intervention will not induce an unexpectedly erratic
response. While chaos has been observed in some physiological
models,1,10,11,23,26 DIU in physiology is not yet well-understood by
mathematicians, nor is its significance known to clinicians. It is vital
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to uncover the mechanisms that produce DIU and develop precise
mathematical characterizations of the resulting dynamics. More-
over, it is crucial to assess the impact of DIU on data assimilation
and clinical practice. In this work, we uncover a route to DIU for
oscillatory dynamical systems.

We formulate a general framework for the emergence of
DIU in damped, driven oscillatory systems and then focus on
the ultradian glucose–insulin oscillation. The framework consists
of three components. First, delay renders the unforced dynami-
cal system excitable. For the damped, driven oscillators we con-
sider in this paper, delay produces a weakly stable limit cycle. This
can happen, for instance, via a delay-induced supercritical Hopf
bifurcation.6,17,32,45,47,48 Second, the unforced system possesses intrin-
sic shear. For damped, driven oscillators, shear quantifies velocity
gradients near the limit cycle. Third, the forcing drive interacts with
the shear to stretch and fold the phase space. This interaction cre-
ates hyperbolicity in the dynamics and produces sustained temporal
chaos. The forcing drive does not overwhelm the intrinsic dynamics.
On the contrary, it interacts subtly with intrinsic shear to produce
DIU.

We perform a number of experiments that show DIU emer-
gence for an archetypal physiological model, the ultradian glu-
cose–insulin model.3,9,18,36 This finite-dimensional model has been
constructed to explain ultradian oscillations using a minimal
number of components. It includes compartments for interstitial
and plasma insulin, one glucose compartment, several feedback
mechanisms that represent insulin-mediated glucose regulation by
the pancreas, and hepatic responses. Delayed regulatory feedback
between insulin secretion and glucose released by the liver produces
the oscillation. The ultradian model has been used to accurately pre-
dict glucose dynamics in humans.4 It, therefore, provides an ideal
setting for the investigation of DIU.

The presence of DIU in glucose–insulin dynamics may have
profound implications for clinical care in the intensive care unit
(ICU), where glucose and insulin treatments (external forcing
drives) are central to glycemic management. More generally, DIU
is potentially relevant for any physiological system wherein delayed
regulatory feedback controls try to maintain healthy homeostasis.
Examples include pulmonary and respiratory dynamics,26,33 car-
diac dynamics,7 female endocrine dynamics,12,39 and neurological
dynamics,8,14,35 to name but a few. Indeed, the use of mathematical
physiology within medicine has broad potential.5,50

The ultradian model is finite-dimensional because delayed reg-
ulatory feedback appears in the form of a three-stage filter. Conse-
quently, we use the theory of nonuniformly hyperbolic dynamical
systems and specifically the theory of rank one maps41,43,44 to pre-
cisely characterize DIU in the ultradian system. No theory of rank
one maps for infinite-dimensional delay systems currently exists.
This suggests important open questions: Do infinite-dimensional
delay systems [delay differential equations (DDEs)] produce DIU?
How do we rigorously characterize DIU in this context? We begin
to answer the first of these questions here by showing numerically
that DIU emerges in a delay variant of the linear shear flow model
first studied by Zaslavsky49 and then by Lin and Young.24

We conclude the paper by discussing open mathematical ques-
tions inspired by DIU. Further, we assess the potential impact of
DIU on biomedicine and clinical practice.

II. THE ULTRADIAN MODEL

We describe the ultradian glucose–insulin model9,18,36 as well as
the external forcing drives that produce DIU.

The ultradian model is a compartment model with three state
variables: plasma glucose (G), plasma insulin (Ip), and interstitial
insulin (Ii). See Fig. 1 for the model schematic. These three state
variables are coupled to a three-stage linear delay filter, producing
a six-dimensional phase space. The ultradian model is particularly
popular because it is the simplest physiological model that captures
the main features of glucose–insulin oscillations9,36 and provides a
mechanistic description of the cause of the oscillations. The model
includes two major negative feedback loops describing effects of
insulin on glucose use and glucose production. Both loops include
glucose-based stimulation of insulin secretion.

Oscillations in the ultradian system depend on (i) a time delay
of 30-45 min for the effect of insulin on glucose production and (ii)
the slow effect of insulin on glucose use arising from insulin being
in two distinct compartments. We focus on the former in this paper.
Note that the ultradian model includes physiological delay, but the
system is finite-dimensional because the delay assumes the form of a
three-stage linear filter.

The full model is given by

dIp

dt
= f1(G) − E

(

Ip

Vp

−
Ii

Vi

)

−
Ip

tp

, (1a)

dIi

dt
= E

(

Ip

Vp

−
Ii

Vi

)

−
Ii

ti

, (1b)

dG

dt
= f4(h3) + IG(t) − f2(G) − f3(Ii)G, (1c)

FIG. 1. Schematic of the ultradian model of glucose–insulin dynamics.
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dh1

dt
=

1

td

(Ip − h1), (1d)

dh2

dt
=

1

td

(h1 − h2), (1e)

dh3

dt
=

1

td

(h2 − h3), (1f)

where f1(G) represents the rate of insulin production, f2(G) rep-
resents insulin-independent glucose use (IIGU), f3(Ii)G repre-
sents insulin-dependent glucose use (IDGU), and f4(h3) represents
delayed insulin-dependent glucose use. The functional forms of
these are

f1(G) =
Rm

1 + exp
(

−G
Vgc1

+ a1

) ,

f2(G) = Ub

(

1 − exp

(

−G

C2Vg

))

,
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1

C3Vg

(

U0 +
Um − U0

1 + (κIi)
−β

)

,

f4(h3) =
Rg

1 + exp
(

α

(

h3
C5Vp

− 1
)) ,

with

κ =
1

C4

(

1

Vi

−
1

Eti

)

.

See Table I for parameter descriptions and nominal parameter
values.

For our DIU experiments, we first consider an idealized nutri-
tional driver IG(t) that includes a basal signal and pulsatile kicks. The
idealized nutritional driver is given by

IG(t) = I0 +

∞
∑

n=0

Anδ(t − Tn), (2)

where I0 is a basal nutritional input for the system, Tn is the time
of the nth feeding, and An is the amount of carbohydrate in that
meal. The signal IG(t) represents the external forcing in the ultradian
model. The form of IG(t) in Eq. (2) produces the following dynamics:
between two consecutive kicks (Tn−1 < t < Tn), ultradian dynam-
ics evolve according to system (1) with IG(t) = I0. At the time Tn of
meal n, the glucose state variable, G, undergoes the instantaneous
change G 7→ G + An. We demonstrate the emergence of DIU for
both fixed and random kick amplitudes (An)

∞
n=0 and inter-kick times

(Tn+1 − Tn)
∞
n=0.

In reality, meals produce glucose kicks that are temporally
localized but not instantaneous. Our DIU results for the idealized
nutritional driver strongly predict DIU emergence for the complex
external forcing drives encountered in the intensive care unit. To
support this claim, we show that DIU remains present when we
replace the δ-kicks in Eq. (2) with square pulses of duration 30 min
that arrive at 8 am, noon, and 6 pm.

III. DELAY-INDUCED UNCERTAINTY FOR THE

ULTRADIAN MODEL

We first formulate a general DIU framework for damped,
driven oscillatory systems. This framework explains the origins of
sustained temporal chaos for the ultradian model. We then present
a series of numerical experiments that demonstrate the presence and
robustness of DIU in the ultradian model. We conclude Sec. III by
providing a full dynamical profile of DIU in the ultradian model
and use ideas from smooth ergodic theory to support our numerical
findings.

A. DIU framework

Our route to DIU for damped, driven oscillatory systems
involves the following three components.

(U1) Delay-induced excitability. Delay renders the unforced (intrin-
sic) dynamical system excitable by producing a weakly stable
limit cycle. As we will see, delay in the ultradian model produces
a limit cycle via a supercritical Hopf bifurcation.

(U2) Intrinsic shear. Shear refers to significant velocity gradients in
a tubular neighborhood of the limit cycle. Atmospheric wind
shear provides a good mental picture of the phenomenon.

(U3) External forcing allows shear to act. External forcing allows
the shear to stretch and fold the phase space, thereby creating
hyperbolicity in the dynamics.

Figure 2 illustrates the geometric mechanism behind the emer-
gence of sustained temporal chaos. Since our glucose forcing signals
(2) are pulsatile, the evolution of the ultradian system decomposes
into windows of relaxation punctuated by kicks. The amount of
shear near the limit cycle determines how the kick-relaxation cycle
acts on phase space. In the absence of shear [Fig. 2(a)], the kicked
limit cycle would calmly relax before the next kick. The phase space
would not stretch and fold in this case. When shear is strong,
the phase space would stretch and fold between kicks [Fig. 2(b)],
producing sustained temporal chaos.

Importantly, DIU is not a phenomenon wherein the external
forcing simply overwhelms the intrinsic dynamics. On the contrary,
forcing amplitudes can be quite small. Forcing acts as an amplifier
in our DIU framework, amplifying the impact of intrinsic shear to
produce rich, complex dynamics.

B. Simulation results for idealized pulsatile forcing

We deploy our DIU framework to establish DIU emergence in
the ultradian model with glucose input signal (2). We show that DIU
emerges for both constant and random kick amplitudes and inter-
kick times. The results of this section are numerical in nature for the
following reason. Since the ultradian model is finite-dimensional,
the analysis of kicked limit cycles for nonlinear systems in Refs. 28
and 42 provides rigorous mathematical support for our simulation
results. This analysis leverages the theory of rank one maps41,43,44 to
provide a dynamical profile of DIU. This profile includes the exis-
tence of a strange attractor. However, the theory of rank one maps
has not yet been extended to treat random inter-kick times or ran-
dom kick amplitudes. Even when both kick amplitude and inter-kick
time are held constant (An = A and Tn = nT for all n), the current
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FIG. 2. Kick-relaxation dynamics of the ultradian model with pulsatile forcing. When the system is kicked, the limit cycle (red circle) deforms (black curve). Before the next
kick, the system relaxes toward the limit cycle. (a) In the absence of shear, the kicked limit cycle quickly relaxes. The phase space does not stretch and fold. (b) When shear is
strong, the kicked limit cycle stretches and folds during the relaxation phase (assuming the time between kicks is long enough to allow stretch and fold geometry to manifest).
The kick-relaxation cycle produces sustained temporal chaos.

theory of rank one maps cannot tell us if a strange attractor exists
for specific values of A and T.28,42 Rather, the rigorous applications of
the theory developed thus far prove the existence of strange attrac-
tors for parameter sets of positive Lebesgue measure. Moreover,
the theory of Refs. 28 and 42 is an asymptotic theory, whereas our
numerical experiments take place in a practical parameter regime.

We, therefore, analyze the ultradian model numerically and
use the maximal Lyapunov exponent, 3max, as a DIU diagnostic:
3max > 0 indicates DIU, while 3max < 0 indicates that DIU is
absent.
Parameter selection. Excluding the nutritional driver, we set all
ultradian model parameters to the values in Table I for our simu-
lations. For the nutritional driver, we set the basal rate I0 to zero. We
are, therefore, free only to tune the delay td and choose models for
the kick amplitudes An and the inter-kick times Tn+1 − Tn.
DIU framework for the ultradian model. The emergence of a limit
cycle in system (1) as the delay td increases invokes framework
(U1)–(U3) for the presence of DIU in the ultradian system.

(U1). Consider the unforced version of system (1), obtained
by removing IG(t). For a variety of time delays, Fig. 3 shows glu-
cose timeseries (top row) and two-dimensional projections of phase
space trajectories (bottom row) generated by the unforced ultra-
dian system. We see that a stable equilibrium bifurcates into a limit
cycle as the system undergoes a supercritical Hopf bifurcation at a
delay value t∗d satisfying 8 < t∗d < 12. The presence of the limit cycle
implies excitability.

(U2) and (U3). We claim that limit cycles subjected to pulsatile
forcing drives generically satisfy these two framework components.

The geometric ideas of Wang and Young42 and the quantitative anal-
ysis of Ott and Stenlund28 support this claim for finite-dimensional
nonlinear systems. For (U2), shear can be understood geometrically
by examining the shape of the strong stable foliation in a tubular
neighborhood of the limit cycle.42 Ott and Stenlund28 quantify shear
by defining a shear integral that represents the accumulation of shear
as one traverses the limit cycle.

For (U3), the external forcing must interact with the shear
in order to produce sustained temporal chaos. We claim that this
happens for generic pulsatile forcing drives. To support this claim,
Wang and Young prove that given a C4 flow on a Riemannian mani-
fold that admits a hyperbolic limit cycle, periodic kicks will produce
strange attractors for an open set of C3 kick functions (Theorem 1
of Ref. 42). Ott and Stenlund28 define a function that quantifies the
forcing-shear interaction and assume that this function is Morse in
their main theorem on the existence of strange attractors. They con-
jecture that this assumption will hold for a generic kick-generating
vector field, both in terms of topological genericity and prevalence.
See Remark 2.1 of Ref. 28 for a discussion of the conjecture and
Ref. 29 for information about prevalence. Note that for the ultradian
model, the kicks provided by the nutritional driver have no spatial
variation with respect to the original state variables. Such a variation
should be present, however, for the coordinate system near the limit
cycle developed in Ref. 28.
The maximal Lyapunov exponent as a diagnostic tool. We now
present the numerical experiments that establish the presence of
DIU for the ultradian model. We use the maximal Lyapunov expo-
nent as a DIU diagnostic: 3max > 0 indicates DIU, while 3max < 0
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FIG. 3. For the unforced ultradian model, a supercritical Hopf bifurcation produces a limit cycle as delay td increases. Top row: Glucose timeseries for (a) td = 2min, (b)
td = 8min, (c) td = 12min, and (d) td = 20min. Bottom row: Projection of a phase space trajectory onto glucose-plasma insulin space for (e) td = 2min, (f) td = 8min,
(g) td = 12min, and (h) td = 20min. Other parameter values are given in Table I.

indicates its absence. We compute the maximal Lyapunov expo-
nent by solving system (1) as follows. During the relaxation intervals
(Tn−1, Tn) between kicks, we integrate the differential equations
using MATLAB’s ode23s stiff solver. At kick times Tn, we pause
the differential equation solver and apply the diffeomorphism of
phase space induced by the kick G 7→ G + An. We compute 3max

by completing 105 kick-relaxation cycles. Our maximal Lyapunov
exponent, therefore, quantifies the amount of expansion per kick-
relaxation cycle.
Constant kick amplitude, periodic, or Poissonian kicks. For our
first set of experiments, we choose a value of the delay td such that
the limit cycle is present in the unforced system, and then hold td

fixed. We consider kicks of constant intensity, An = A for all n. Kick
times are either periodic, Tn = nT for all n, or Poissonian. In the
Poissonian case, the inter-kick times Tn+1 − Tn are independent and
exponentially distributed with mean T. We show that DIU emerges
even for these relatively simple forms of the nutritional driver (2)
by examining how the maximal Lyapunov exponent depends on A
and T.

We compute the maximal Lyapunov exponent as follows.
For simulations involving periodic kicks [see Figs. 4(a)–4(c)
and 5(a)–5(c)], we track two solutions to system (1), initially sep-
arated by d0 = 10−8. Think of one of these solutions as the base
solution and the other as a secondary, perturbed solution. After the
first kick-relaxation cycle, we compute the separation d1 between
the solutions at time T and store the quantity log(d1/d0) in a vec-
tor. We then renormalize by moving the secondary orbit toward the
base orbit so that the distance between the two resets to d0. We pro-
ceed in this manner for 105 kick-relaxation cycles. This produces

a vector containing 105 values of log(d1/d0). Averaging over this
vector produces 3max, the maximal Lyapunov exponent.

For simulations involving Poissonian kicks [see Figs. 4(d)–4(f)
and 5(d)–5(f)], the maximal Lyapunov exponent is a random vari-
able, as it depends a priori on the random inter-kick times. To
compute it, we first sample 105 inter-kick times from the expo-
nential distribution with mean T. These samples produce a single
realization of the stochastic process. We compute the maximal Lya-
punov exponent for this realization by proceeding as we did in the
case of periodic kicks. That is, we compute log(d1/d0) following
each kick-relaxation cycle and then average. Finally, we average the
realization-dependent maximal Lyapunov exponent over 105 real-
izations of the Poisson process. Abusing notation slightly, we call
this average 3max.

Figures 4(a)–4(c) and 5(a)–5(c) display maximal Lyapunov
exponent results for the case of constant kick amplitude and peri-
odic kicks. Here, 3max is a function of the kick amplitude A and the
inter-kick time T.

For three different fixed values of A, 3max becomes positive as T
increases, indicating the onset of DIU [Figs. 4(a)–4(c)]. This is con-
sistent with the intuition from Fig. 2: larger values of T allow more
time for the phase space to stretch and fold between kicks. The max-
imal Lyapunov exponent depends on T in a particularly interesting
way when A = 50 mg/dL [Fig. 4(c)]. Here, 3max < 0 for small values
of T, indicating that DIU is absent and suggesting that the time-T
map of the system possesses an attractor that is diffeomorphic to
the limit cycle present in the unforced ultradian system. By contrast,
3max > 0 for large values of T, indicating the presence of DIU and
suggesting that the time-T map of the system possesses a strange
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FIG. 4. Maximal Lyapunov exponent in the ultradian model as a function of kick timing. Positive 3max indicates the presence of DIU. (a)–(c) For periodic kicks, plots of 3max

vs the inter-kick time T for several fixed values of kick amplitude A. (a) A = 2mg/dL. (b) A = 10mg/dL. (c) A = 50mg/dL. (d)–(f) For Poissonian kicks, plots of 3max vs
mean inter-kick time T for several fixed values of kick amplitude A. (d) A = 2mg/dL. (e) A = 10mg/dL. (f) A = 50mg/dL. Other parameter values are as in Table I.

attractor. The inset in Fig. 4(b) shows that 3max fluctuates around
zero for moderately large values of T. This suggests that the time-T
map of the system possesses horseshoes (transient chaos).

In Figs. 5(a)–5(c), we compute 3max as a function of A for dif-
ferent fixed values of T. When T is small (T = 5 min), the maximal
Lyapunov exponent is negative for all of the values of A we have
simulated, indicating that DIU is absent, robustly so with respect
to A, when T is small [Fig. 5(a)]. By contrast, when T is large
(T = 100 min), 3max is positive for all of the values of A we
have tested, indicating that DIU is present even when A is small
[Fig. 5(c)]. We observe a transition from quiescence to DIU as A
increases when T is moderately large [T = 20 min, Fig. 5(b)].

Figures 4(d)–4(f) and 5(d)–5(f) display maximal Lyapunov
exponent results for the case of constant kick amplitude and Pois-
sonian kicks. Here, 3max > 0 for most of the kick amplitudes A and
mean inter-kick times T we tested, indicating the robust presence of
DIU. Note that when A is fixed at A = 50 mg/dL, DIU onset occurs
significantly earlier in the Poissonian case than in the periodic case
as T increases [Figs. 4(c) and 4(f)].

Uniformly distributed kick amplitudes, periodic kicks. We
claim that DIU emergence is robust—DIU will emerge regardless of
the particular shape of the pulsatile forcing. Our remaining exper-
iments with the ultradian model support this claim. For the next
set of experiments, we make the (more realistic) assumption that
kick amplitudes are random, rather than constant. In particular, we

assume the kick amplitudes An are independent and uniformly dis-
tributed, while the kicks are periodic in time with inter-kick time T.
Figure 6(a) shows the distribution of 3max as a function of T when
the kick amplitudes are drawn from the uniform distribution on
[45, 55]. When T is small, the distribution of 3max is essentially a
Dirac delta at a negative value. Interestingly, at the moment E[3max]
crosses zero, the variance of 3max immediately becomes positive and
continues to grow as T increases.

For our second experiment with uniformly distributed kick
amplitudes, we fix T at T = 40 min, fix the mean of the kick ampli-
tude distribution at 50 mg/dL, and examine how the distribution
of 3max varies with the variance of the kick amplitude distribu-
tion. Notice that T = 40 min is beyond the critical value at which
we see an abrupt behavioral change in Fig. 6(a). Interestingly, the
overall width of the 3max distribution seems to be insensitive to
kick amplitude variance, yet we see subtle variation at fine scales
[Fig. 6(b)].

A meal-like carbohydrate input signal. For our final experi-
ment with the ultradian model, we replace the sum of δ-pulses in
the nutritional driver (2) with square pulses of height A that have
a duration of 30 min and begin daily at 8 am, noon, and 6 pm.
Figure 7(a) shows that DIU quickly emerges as A increases. For
values of A in the DIU regime, the corresponding glucose time-
series behave in an interesting way [Figs. 7(b)–7(d)]. When A = 100,
for instance, the glucose timeseries contains windows with erratic
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FIG. 5. Maximal Lyapunov exponent in the ultradian model as a function of kick amplitude. Positive 3max indicates the presence of DIU. (a)–(c) For periodic kicks, plots of
3max as a function of kick amplitude for several different values of inter-kick time T . (a) T = 5min. (b) T = 20min. (c) T = 100min. (d)–(f) For Poissonian kicks, plots of
3max as a function of kick amplitude for several different values of mean inter-kick time T . (d) T = 5min. (e) T = 20min. (f) T = 100min. Other parameter values are as
in Table I.

behavior and windows wherein the glucose signal is nearly con-
stant. Such behavior would potentially confuse clinicians and can
complicate data-based detection and interpretation of DIU.

C. Dynamical profile of DIU for the ultradian model

Since the ultradian model is finite-dimensional, the analysis of
kicked limit cycles for nonlinear systems in Refs. 28 and 42 sup-
ports our numerical findings and leverages the theory of rank one

maps41,43,44 to provide a dynamical profile of DIU. We associate
DIU with the existence of a strange attractor that supports a unique
ergodic Sinai–Ruelle–Bowen measure. The system has a positive
Lyapunov exponent (sustained temporal chaos) and possesses rich
statistical properties. These include a dynamical version of the cen-
tral limit theorem, exponential decay of correlations, and a large
deviation principle.

Figure 8 illustrates how DIU impacts ultradian dynamics. Here,
we simulate the ultradian model with delay td = 12 min, a value for

FIG. 6. The distribution of 3max for the ultradian model when the kicks are independent and uniformly distributed. Once again we see evidence of DIU. (a) We fix the

kick amplitude distribution A ∼ U[45, 55], so that 〈A〉 = 50mg/dL and Var[A] = 8.3̄. For T values that produce 3max < 0 in Fig. 4(c), the distribution of 3max resembles
a Dirac delta. However, for T values that produce 3max > 0 in Fig. 4(c), a distribution of values emerges for 3max that broadens as T grows. (b) We fix T = 40min, fix
〈A〉 = 50mg/dL, and plot the distribution of 3max as a function of Var[A].
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FIG. 7. Robust DIU emergence for a meal-like carbohydrate signal. We replace the sum of δ-pulses in the nutritional driver (2) with square pulses of height A that have a
duration of 30min and begin daily at 8 am, noon, and 6 pm. (a) The top Lyapunov exponent is positive even for small values of A, indicating robust emergence of DIU for this
forcing signal. (b)–(d) Sample glucose timeseries for three values of A in the DIU regime.

FIG. 8. Dynamical profile of ultradian dynamics in the absence (left column) and presence (right column) of DIU. (a) Glucose levels oscillate in a regular manner. (b) The
empirical glucose distribution associated with the timeseries from (a) is bimodal. (c) The time-T map generated by the ultradian system possesses an attractor that is
diffeomorphic to the limit cycle of the unforced system. (d) Glucose levels evolve erratically. (e) The empirical glucose distribution associated with the timeseries from (d) is
unimodal and appears to be approximately Gaussian but with finite support. (f) The time-T map generated by the ultradian system possesses a strange attractor. Left column:
T = 20min. Right column: T = 200min. All panels: td = 12min, A = 10mg/dL, and other parameter values are as in Table I.
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which the unforced system possesses a limit cycle. We drive the
system using nutritional driver (2) with periodic glucose kicks of
constant amplitude A = 10 mg/dL. We select a small value of the
inter-kick time for which DIU is absent (T = 20 min, left column)
and a larger value for which DIU is present (T = 200 min, right
column).

The first two rows of Fig. 8 show representative glucose time-
series and corresponding empirical glucose distributions. When
DIU is absent, glucose levels oscillate regularly as expected, but
interestingly the empirical glucose distribution is bimodal. By con-
trast, the erratic behavior of the glucose timeseries in the presence of
DIU reflects the chaos in the system. Notice that the empirical distri-
bution in the DIU case appears to be approximately Gaussian. This
observation is consistent with the results on Sinai–Ruelle–Bowen
measures for general kicked limit cycles in Refs. 28 and 42, where
scalar observables are shown to satisfy a dynamical version of the
central limit theorem.

Figures 8(d) and 8(e) suggest that the impact of DIU on clinical
practice will be subtle and complex. When employing a single-orbit
perspective on dynamics, sustained temporal chaos renders rational
medical intervention extremely difficult. If only the statistical behav-
ior of observables of the dynamics (such as glucose level) matters
in a particular setting, then DIU may be beneficial, since the results
of Refs. 28 and 42 suggest that observables of ultradian dynamics
behave with a high level of statistical regularity.

We plot the attractors of the time-T map generated by the ultra-
dian system in Figs. 8(c) and 8(f). When DIU is absent, the attractor
is diffeomorphic to the limit cycle of the unforced system. In the
presence of DIU, we observe a strange attractor with intricate geom-
etry. These results are consistent with the rigorous theory of Refs. 28
and 42.

IV. DELAY-INDUCED UNCERTAINTY FOR DELAY

LINEAR SHEAR FLOW

There exists no theory of rank one maps for infinite-
dimensional delay systems at this time. Nevertheless, the geometric

principles behind our DIU framework remain valid for infinite-
dimensional dynamics. We believe that it will be possible to develop
a rigorous DIU theory for delay differential equations (DDEs). Such
a theory would have a considerable value given the ubiquity of DDE
modeling in mathematical physiology.

We show that it is possible for delay differential equations to
produce DIU by demonstrating that even a simple DDE does so.

A. Delay linear shear flow

The dynamics take place on the cylinder S
1 × R. Writing θ for

the S
1-coordinate and z for the R-coordinate, delay linear shear flow

is generated by the delay differential equations,

ż(t) = −λz(t − τ) + A8(θ)

∞
∑

n=0

δ(t − nT), (3a)

θ̇ = 1 + σ z. (3b)

System (3) is infinite-dimensional due to the delay τ : one must spec-
ify an initial history h : [−τ , 0] → S

1 × R in order to propagate the
dynamics forward. The final term on the right side of Eq. (3a) rep-
resents periodic pulsatile kicks. Here, A ≥ 0 is the kick amplitude,
T > 0 is the inter-kick time, 8 : S

1 → R describes the kick profile,
and δ is the Dirac delta. The Dirac delta has the following interpreta-
tion: at each nonnegative integer multiple of T, each point in S

1 × R

instantaneously moves from (θ , z) to (θ , z + A8(θ)). Between kicks,
the dynamics are governed by the unforced delay equations,

ż(t) = −λz(t − τ), (4a)

θ̇ = 1 + σ z. (4b)

Together with delay τ , the parameters λ > 0 and σ ∈ R shape the
dynamics of the unforced dynamical system.
Evidence for DIU. We argue that DIU emerges when τ > 0. Since
no theory of rank one maps exists yet for infinite-dimensional delay
systems, we compute the top Lyapunov exponent 3max numerically

FIG. 9. DIU for delay linear shear flow (3). (a) When delay τ is small, the top Lyapunov exponent 3max is negative over the tested range of inter-kick times T . DIU has not
emerged when delay is small. (b) When delay is substantial, DIU emerges when 3max transitions from negative to positive. (c) Heatmap illustrating the sign of 3max as a
function of the delay τ and the inter-kick time T . Red indicates that 3max > 0; blue indicates that 3max < 0. The sign of 3max depends sensitively on τ and T in the black
region. Here, σ = 3, λ = 0.1, A = 0.1, and 8 = 1. For t ∈ [−τ , 0], we take h(t) = (θ(t), z(t)) = (0, t2).
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and use 3max as a DIU diagnostic. That is, DIU is present if 3max > 0
and absent if 3max < 0. We invoke the (U1)–(U3) route to DIU and
display our numerical evidence in Fig. 9.

(U1). Delay induces excitability in system (3) because the sta-
bility of the limit cycle weakens as τ increases. This is because
the strength of stability of the zero solution to the scalar delay
differential equation

ż(t) = −λz(t − τ)

is determined by the (complex) solutions of the characteristic
equation

γ + λe−γ τ = 0.

(U2). The angular velocity gradient parameter σ in Eq. (4b)
quantifies shear in the unforced system.

(U3). Here, there exists a subtle difference between the delay
(τ > 0) case and the delay-free (τ = 0) case. In the delay-free case,
the kick profile 8 needs to be nonconstant in order to create the
z-variability that leads to stretching and folding of the phase space.
This requirement can be dropped in the delay case. Here, the history
h that serves as initial data for system (3) can provide z-variability,
so DIU can emerge even if 8 is a constant function. Indeed, we
demonstrate this in Fig. 9.
The delay-free case τ = 0. For the sake of completeness, we sum-
marize what is known about this finite-dimensional system. In the
absence of delay, linear shear flow assumes the form

ż(t) = −λz(t) + A8(θ)

∞
∑

n=0

δ(t − nT), (5a)

θ̇ = 1 + σ z. (5b)

This deceptively simple system has been studied by mathematical
physicists such as Zaslavsky49 and by dynamicists such as Lin and
Young.24 Without forcing (A = 0), the set � = {(θ , z) : z = 0} is a
limit cycle of system (5) for all values of the contraction parameter
λ > 0. This limit cycle is weakly stable if λ is small. The dynamics of
linear shear flow depends on the size and shape of the pulsatile kicks,
as well as how trajectories relax to the limit cycle between kicks.

The angular velocity gradient parameter σ quantifies the shear
in system (5). This parameter links with A and λ to form the
hyperbolicity factor

Aσ

λ
=

(kick amplitude) · (shear)

(contraction)
.

The hyperbolicity factor governs the dynamics of system (5). We
express this through the behavior of the time-T map FT : S

1 ×

R → S
1 × R generated by linear shear flow (the result of one kick

followed by one relaxation cycle).
If Aσ

λ
is small, then the kicked system will quickly return to

equilibrium after each kick [Fig. 2(a)]. Mathematically, FT admits an
attractor diffeomorphic to S

1. However, stretch and fold geometry
emerges when the hyperbolicity factor is large [Fig. 2(b)]. Provided
the kick profile 8 is not a constant function, each kick creates
wave-like variability in the z-direction [Fig. 2(b), first image]. If the
relaxation time T is sizable, shear will then cause the waves to stretch

and fold [Fig. 2(b), second image]. Chaotic behavior consequently
emerges when the hyperbolicity factor is large.

Mathematically, FT admits a strange attractor for a set of T val-
ues of positive Lebesgue measure, provided the hyperbolicity factor
is sufficiently large and the kick profile 8 is not a constant func-
tion. For such values of T, FT is genuinely nonuniformly hyperbolic.
In particular, it exhibits a positive Lyapunov exponent (the chaos is
sustained in time). The strange attractor supports a unique ergodic
Sinai–Ruelle–Bowen measure. This measure describes the asymp-
totic distribution of almost every orbit in the basin of attraction (the
chaos is observable). The Sinai–Ruelle–Bowen measure possesses
strong statistical properties: The system obeys a dynamical version
of the central limit theorem, correlations for Hölder observables
decay exponentially, and a large deviation principle holds.

Found in Ref. 42, precise statements and proofs of these rigor-
ous results for linear shear flow rely on the theory of rank one maps.
Developed by Wang and Young,41,43,44 rank one theory provides
a platform for proving the existence of nonuniformly hyperbolic
dynamics (sustained, observable chaos) within concrete systems of
interest in the biochemical and physical sciences.

The proofs for linear shear flow involve verifying the hypothe-
ses of the theory of rank one maps. In particular, Wang and Young42

analyze a certain “infinite relaxation” T → ∞ limit of FT. This pro-
cedure produces the singular limit, a parameterized family of circle
maps. Rank one theory links the dynamics of the singular limit to
those of FT. For linear shear flow, the hyperbolicity factor gives the
amount of expansion in the singular limit. Expansion in the singular
limit links to sustained, observable chaos for FT.

V. DISCUSSION

A. Summary

In this paper, we have proposed a novel route by which delay
can cause the onset of sustained temporal chaos in externally forced
dynamical systems. We call the resulting chaos delay-induced uncer-
tainty. We have formulated a framework that may be used to diag-
nose the presence of DIU. The DIU framework consists of three
components: (i) delay induces excitability in the unforced system,
(ii) the unforced system possesses shear, and (iii) the external forc-
ing interacts with the shear. We have shown that this framework can
transform limit cycles into strange attractors.

Guided by our DIU framework, we have demonstrated numer-
ically that the ultradian glucose–insulin model can produce DIU.
DIU emerges for both deterministic and random Dirac-δ forcing,
as well as for meal-like carbohydrate input signals. Our numeri-
cal experiments use the largest Lyapunov exponent 3max as a DIU
diagnostic: 3max > 0 indicates that DIU is present, while 3max < 0
indicates that it is absent.

The ultradian model is finite-dimensional because delay in this
model assumes the form of a three-stage linear filter. Because of this,
the theory of rank one maps from smooth ergodic theory provides a
rigorous dynamical profile of DIU for the ultradian model. No such
theory exists for the infinite-dimensional flows generated by delay
differential equations. Nevertheless, we believe that the mechanisms
in our DIU framework can cause infinite-dimensional delay systems
to produce DIU. We have supported this belief by showing that a
delay linear shear flow model produces DIU. This model allows us
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to illuminate both the geometry of DIU and how delay leads to DIU
onset.

Because many physiological systems oscillate and possess
meaningful sources of delay, we believe DIU is relevant throughout
mathematical physiology.

B. DIU in clinical medicine: Impact and outlook

The existence of delay-induced uncertainty in the ultradian
model acknowledges and potentially explains the difficulties clini-
cians face when managing glucose in the ICU.30,37,40 Predicting the
precise temporal evolution of a chaotic system is extremely challeng-
ing. Recently, artificial intelligence has been touted as a potential
solution to problems in health care.38 Our results imply that arti-
ficial intelligence may not be the solution because glucose–insulin
metabolism is not just complicated but actually chaotic. A better
path might be to acknowledge the chaos and approach clinical chal-
lenges statistically, estimating expected variances so that decisions
can be based on the distribution of likely outcomes.2

Better matching of models to real ICU experience may help
identify and avoid treatments that are likely to produce chaotic
behavior. For example, in a different context wherein the kicks rep-
resent impulsive insulin administration15,31 rather than nutrition,
smaller, more frequent insulin doses may be better than larger, less
frequent doses. In the language of this paper, the former corresponds
to lower kick amplitude and smaller inter-kick time. Note that this
hypothesis is consistent with analysis of impulsive insulin injection
models.15,31 In particular, Sec. 3.4 of Ref. 15 describes how insulin
injection dose and period should be selected so as to maintain ideal
homeostatic glucose levels. For this particular model, smaller doses
of insulin administered more frequently are more efficient and effec-
tive. Our work here may serve as a foundation for future work aimed
at understanding uncertainty induced by delay.

Practical medicine introduces additional complexity we will
analyze in future work, most notably nonstationarity. In this paper,
we have analyzed stationary models, meaning that model param-
eters do not change over time. In the ultradian context, we have,
therefore, held the overall health state of the patient fixed, since the
ultradian model parameters represent overall health state.4 This is
often a reasonable assumption for glycemic management in the ICU
since the timescales of medical interventions are relatively fast. On
longer timescales over which diseases such as diabetes affect patient
health state, we anticipate that nonstationarity will be a common
issue for DIU analysis in health-related physiologic settings.

The DIU dynamical profile has two facets. Sustained temporal
chaos renders the precise temporal evolution of individual trajecto-
ries extremely difficult to predict. However, dynamical systems may
also be viewed through a statistical lens: How do observables behave
statistically? DIU induces sustained temporal chaos, yet observables
exhibit strong statistical regularity. Whether DIU is a benefit or
a hazard, therefore, depends on context and point of view. We
briefly present two explicit examples to illustrate this point: glycemic
management of enterally fed patients in an intensive care unit
and glycemic self-management for a person with type-2 diabetes
(T2DM).

Clinicians managing glucose levels in an ICU are not necessar-
ily interested in the exact temporal evolution of individual glucose

trajectories, but rather the boundaries of the achieved glucose lev-
els. Our simulations show that while the presence of DIU renders
individual glucose trajectories unpredictable, it narrows the sup-
port of the invariant measure (projected onto the glucose variable).
This narrowing could in theory positively impact glycemic manage-
ment. Therefore, while clinicians seek to avoid chaos in general, it
could be beneficial to design glycemic management protocols that
deliberately induce DIU.

On the other hand, T2DM patients monitor their blood glucose
levels at home in order to quantify activity impact. Here, ratio-
nal decision-making requires understanding the temporal evolu-
tion of individual glucose trajectories. Glucose readings potentially
become uninterpretable when DIU is present. This would render
self-management a nearly impossible task and suggests that DIU
may negatively impact T2DM patients.

We emphasize that our thoughts on T2DM are speculative
ideas for future work. Mathematically, the T2DM scenario differs
from ICU glycemic management in an important way. While the
latter involves glycemic oscillations, analyzing the former involves
analyzing how the system returns to a fixed point after nutritional
kicks. This suggests a dynamics problem: Does DIU emerge when
infinite-dimensional flows with fixed points are subjected to pul-
satile forcing drives? For finite-dimensional nonlinear flows, the
theory of rank one maps has been used to analyze certain types of
fixed points.27

Our results set the stage for important future work. We have
shown in this paper that the DIU phenomenon has the potential to
confound medical decision-making and observational understand-
ing. Next, we must link DIU to data-driven science. How do we
detect DIU using experimental data? What mechanisms produce
DIU, and do these mechanisms possess specific detectable statistical
signatures?

C. Directions for future mathematical research

Our work suggests several intriguing mathematical problems.
Can one develop a general theory of rank one maps that would
apply to the flows on function spaces generated by delay differential
equations? There exist two approaches. One could build a theory of
rank one maps that applies directly to Banach spaces. Alternatively,
one could combine existing rank one theory with invariant mani-
fold techniques, as Lu, Wang, and Young have done for supercritical
Hopf bifurcations in certain parabolic PDEs.25 A general theory of
rank one maps for delay differential equations would apply to DDE
glucose–insulin models such as the two-delay model introduced in
Ref. 22 and analyzed in Ref. 21. Proving that such systems exhibit
DIU is an important next step given the broad applicability of DDE
glucose–insulin modeling.19,46

The external forcing signals we have studied here have rel-
atively simple structure. What do more complex forcing signals
produce in the DIU context? For instance, what if the forcing
assumes the form of a continuous-time stochastic process with a
jump component, such as Lévy noise?

Nonstationary dynamical systems have received considerable
attention over the past 15 years. Here, the dynamical model itself
varies in time. Glycemic management in the ICU fits naturally into
this setting: ultradian model parameters likely drift over time as
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TABLE I. Full list of parameters for the ultradian glucose–insulin model.4 Note that IIGU and IDGU denote insulin-independent glucose utilization and insulin-dependent glucose

utilization, respectively.

Ultradian model parameters

Name Nominal value Meaning

Vp 3 l Plasma volume
Vi 11 l Interstitial volume
Vg 10 l Glucose space
E 0.2 L min−1 Exchange rate for insulin between remote and plasma compartments
tp 6 min Time constant for plasma insulin degradation (via kidney and liver filtering)
ti 100 min Time constant for remote insulin degradation (via muscle and adipose tissue)
td 12 min Delay between plasma insulin and glucose production
Rm 209 mU min−1 Linear constant affecting insulin secretion
a1 6.6 Exponential constant affecting insulin secretion
C1 300 mg l−1 Exponential constant affecting insulin secretion
C2 144 mg l−1 Exponential constant affecting IIGU
C3 100 mg l−1 Linear constant affecting IDGU
C4 80 mU l−1 Factor affecting IDGU
C5 26 mU l−1 Exponential constant affecting IDGU
Ub 72 mg min−1 Linear constant affecting IIGU
U0 4 mg min−1 Linear constant affecting IDGU
Um 94 mg min−1 Linear constant affecting IDGU
Rg 180 mg min−1 Linear constant affecting IDGU
α 7.5 Exponential constant affecting IDGU
β 1.772 Exponent affecting IDGU

overall patient health state slowly changes. Moreover, we do not
know the statistics of this parameter variability. (If we had this sta-
tistical information, we would be in the setting of random dynamical
systems.) Can one develop DIU theory for nonstationary dynamical
systems?

It will be important to deepen the links between DIU and data-
driven science. Can one develop methods to deduce the presence
of DIU using experimental data? What impact does DIU have on
data assimilation methods? In particular, how does the fact that the
ultradian model exhibits DIU impact our ability to fit this model to
ICU patient data?

Finally, do there exist additional routes to DIU? What happens
when delay acts on multiple timescales?

VI. NOMINAL PARAMETER VALUES FOR THE

ULTRADIAN MODEL

Table I lists the parameter values we have used for our DIU
experiments. See Ref. 4 for information about this parameter set.
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