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How does temporally structured private and social information shape collective decisions? To ad-
dress this question we consider a network of rational agents who independently accumulate private
evidence that triggers a decision upon reaching a threshold. When seen by the whole network, the
first agent’s choice initiates a wave of new decisions; later decisions have less impact. In heteroge-
neous networks, first decisions are made quickly by impulsive individuals who need little evidence
to make a choice, but, even when wrong, can reveal the correct options to nearly everyone else.
We conclude that groups comprised of diverse individuals can make more efficient decisions than
homogenous ones.

A central question in biology, sociology, and economics
is how the exchange of information shapes group de-
cisions [1–7]. Humans and other animals observe the
choices of their peers to guide their own decisions [8–
11]: Argentinian ants form trails by following their peers
[12], African wild dogs depart a congregation in response
to their neighbor’s sneezes [13], and pedestrians look to
each other to decide when to cross a road [14].

How do individuals combine private evidence and so-
cial information to make decisions? What should they
do when they observe choices at odds with their own
beliefs? To address these questions we propose an ana-
lytically tractable model of collective, rational decision-
making. Agents in the network accumulate private ev-
idence according to the widely-adopted drift-diffusion
model (DDM) [15–17]. They do not share private in-
formation, but observe each other’s choices [6, 18]. A
decision reveals the evidence an agent accumulated and
may trigger decisions by undecided observers.

We show that in a group of identical agents, a wrong
first decision leads approximately half the network astray.
However, in heterogeneous networks a wrong first choice
is usually made by a hasty, uninformed agent and only
convinces others who are similarly quick to decide. More
cautious agents can observe the decisions of these early
adopters, and make the right choice. We conclude that in
diverse groups decisions by unreliable agents, even when
wrong, can reveal the better option.

Model Description. We consider an all-to-all network,
or clique, of agents, each deciding between two options
(Fig. 1). To do so, agents continuously accumulate pri-
vate evidence and social evidence from other agents. The
agents do not share their private observations, but know
the statistics of the observations each agent makes, and
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observe the choices of all agents in the network. A deci-
sion, once made, is final and cannot be undone.

Before giving precise definitions, an example provides
some intuition: A group of people is deciding which one of
two new products to buy. To do so, they study the prod-
ucts’ specifications, examine their performance, and read
reviews, making a sequence of observations of varying re-
liability. They also observe which product their friends
choose to buy. To decide, each person combines their
private observations (product reviews) with social infor-
mation (purchase decisions of friends). They do not ex-
change information before making a purchase, but know
the type of information their friends gather, and thus the
statistics of how beliefs evolve [6, 19]. Once a purchase
is made, the product cannot be returned.

a. Evolution of observers’ beliefs. We assume N
agents (observers) accumulate noisy private observations
and optimally combine them with information obtained
from observing the decisions of their neighbors to choose
between two hypotheses, H+ or H−. Either hypothe-
sis is a priori equally likely to be correct. Each agent,
i, makes decisions based on their belief, yi(t), which
equals the log likelihood ratio (LLR) between the hy-
potheses given all available evidence. After making a

sequence of private observations, ξ
(i)
1:t, the belief is there-

fore yi(t) = log[P(H+|ξ(i)1:t)/P(H−|ξ(i)1:t)]. If private obser-
vations are rapid and uncorrelated in time and between
agents, each agent’s belief approximately evolves as

dyi = ±αdt+
√

2αdWi, (1)

where the sign of the drift equals that of the correct hy-
potheses and Wi(t) are independent, standard Wiener
processes [17, 20]. Each observer starts with no evidence
or bias, so yi(0) = 0. We assume henceforth that H+ is
correct, and that the drift in Eq. (1) is α = 1. When H−

is correct and α 6= 1 the analysis is similar.
Each agent, i, sets a threshold, θi, and chooses H+

(H−) at time Ti if yi(Ti) ≥ θi (yi(Ti) ≤ −θi), and
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FIG. 1. (Color online) Waves of collective decisions.
(a) The first in a clique of identical agents gathers sufficient
private evidence but decides incorrectly (red). (b) The first
decision convinces a small wave of agents to agree. Since this
wave is small, it reveals to the undecided (blue) agents that
the first decision was likely wrong. (c) The difference between
decided and undecided agents leads a second wave of agents
to choose correctly (green). (d) The first wave increases with
network size (red), but comprises a smaller fraction of the
population (blue; See Eq. (5)). (e) The time to the first de-
cision decreases with network size (red), allowing each agent
less time to accumulate private information (See Eq. (4)). The
amount of information provided by a first wave decision also
decreases (R+, blue; See Eq. (6)). We used θ = 0.7 in (d) and
(e). Here, and below, solid and dashed lines represent simu-
lations and theory, respectively, and shaded regions capture
one standard deviation of simulated results around the mean.

yi(t) ∈ (−θi, θi) for 0 ≤ t < Ti. An agent’s decision is
observed by all other agents and cannot be undone.

An agent that observes a decision will know whether
the decider chose H+ or H−, but may not know the
threshold of the decider. We will consider omniscient
agents who know each other’s thresholds, and the case of
consensus bias where agents assume all others have the
same thresholds they do.

b. Belief updates due to a decision. Without loss of
generality, we assume the belief of agent i = 1 is the first
to reach threshold at time t = T (See Fig. 1a). The prob-
ability that this decision is correct is (1+exp(−θ))−1 [17].

Until the first decision, beliefs of all agents, yi(t),
evolve independently according to Eq. (1). Upon ob-
serving the first decision, omniscient agents update their
belief by the amount of evidence independently accumu-
lated by the first decider, yi(T )→ yi(T )±θ1 [18]. A pos-
itive (H+) first decision (y1(T ) = θ1) and update causes
any belief that satisfies yi(T

−) ∈ [θi − θ1, θi) just be-
fore the first choice, to cross the positive threshold, θi,
evoking a positive decision by agent i. Similarly, agents
whose belief satisfies yi(T

−) ∈ (−θi, θ1 − θi] would fol-
low a negative first decision. Agents subject to consensus
bias update their belief as yi(T ) → yi(T ) ± θi. For sim-

plicity we assume agents exchange all social information
before accumulating further private information.

Multiple waves of decisions can now follow: The first
choice is followed by a wave of a1 agreeing agents (See
Fig. 1b). Each of the N−a1−1 undecided agents obtains
information by observing who followed the first decision
and who did not. How do the remaining rational agents
make use of this newly revealed information?

Homogeneous populations. To answer this question,
first suppose all agents have identical thresholds, θi = θ,
for all i, so that the cases of omniscience and consen-
sus bias are equivalent. Observing that agent i 6= 1
follows a positive first decision tells other agents that
yi(T

−) ∈ [0, θ). An agent’s belief equals the LLR of
the conditional probabilities of the two options, given all
available information. Therefore observing first wave de-
cision of agent i leads to an increment in belief equal
to [18]

LLR(yi(T ) ∈ (0, θ))
def
= log

(
P(yi(T ) ∈ [0, θ)|H+)

P(yi(T ) ∈ [0, θ)|H−)

)
= log

(∫ θ
0
p+(x, T )dx∫ θ

0
p−(x, T )dx

)
≡ R+(T ).

Here p±(x, t)∆x = P (yi(t) ∈ (x, x + ∆x)|H±) + o(∆x)
is the conditional probability density for the belief of
agent i at time t. Since thresholds are symmetric,∫ θ
0
p−(x, t)dx =

∫ 0

−θ p+(x, t)dx, so observing an agent
j who remains undecided after the first decision reveals
yj(T ) ∈ (−θ, 0], leading to an increment LLR(yj(T ) ∈
(−θ, 0]) ≡ R−(T ) = −R+(T ).

We assume that agents know the statistics of pri-
vate observations and can therefore compute p+(x, t) and
p−(x, t). Agents thus know that beliefs evolve according
to Eq. (1) and that the belief distribution prior to any
decision satisfies:

∂tp± = ∓∂xp± + ∂2xxp±, p±(±θ, t) = 0, (2)

if H± is correct, with p±(x, 0) = δ(x). Agents do not
know which hypothesis is correct, and compute the belief
update, R+(T ), using the belief distributions, p±(x, t).

If the first agent chooses H+, agents undecided after
the first wave combine the information from all observed
decisions and indecisions. Since private measurements
are independent, information obtained from agents in the
first wave is additive, and the belief increment is

c+1
def
= a1R+(T ) + (N − a1 − 2)R−(T )

= (2a1 −N + 2)R+(T ). (3)

If the first decision sways more than half the network,
a1 > N/2 − 1, the weight of new evidence favors the
choice of the first agent. Conversely, observing that the
majority of agents remain undecided provides evidence
against the first agent’s decision. All undecided agents
increment their belief by c+1 , leading to a second wave of
a2 decisions, all of equal sign (See Fig. 1c). Agents in the
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first wave agree with the first decision, while agents in the
second wave agree only if the sign of c+1 matches the first
decision. Observers still undecided after this second wave
update their LLR by a new increment c+2 , and waves of
decisions follow until either all agents make a choice, or
no new agent makes a decision after some belief update,
c+k , k ≥ 2. Undecided agents then continue to accumulate
private information. Whether the first decision is right or
wrong, we will show that in large populations the second
wave of decisions encompasses the entire population.

If the first agent wrongly chooses H−, the computa-
tions are similar: Observing a decision in the first wave
provides a belief increment R−(t) = −R+(t), and ob-
serving an undecided agent provides an increment R+(t),
giving a total increment c−1 = (2a1 −N + 2)R−(T ). Fur-
ther decision waves follow equivalently.

a. Decisions in large groups. As N grows, the time
to the first decision, T, approaches 0, and we can ap-
proximate the solution to Eq. (2) using the method of
images [22, 23] . Using the resulting lifetime distribution
and extreme value theory we find that the expected first
decision time is [24–28]:

E[T ] ≈ θ2

4 lnN
. (4)

The mean time decreases logarithmically with N , al-
lowing each agent less time to gather private information
(Fig. 1e). When the first decision time, T , is small the
remaining beliefs are distributed almost symmetrically
around the origin, and approximately half the population
agrees with the first decision, whether right or wrong. In-
deed, we find that,

E[a1|y1(T ) = ±θ] ≈ N − 1

2

(
1± θ√

4π lnN

)
, (5)

where the last term is positive (negative) if the first agent
correctly (incorrectly) chooses H+ (H−). Thus, slightly
more than half of a large clique immediately follows a cor-
rect first decision, and slightly less than half the clique
follows a wrong first choice (Fig. 1d shows the mean num-
ber and fraction following a correct first decision).

The number of agents in excess of half the population
following a correct first decision scales as N(lnN)−1/2.
But as the population grows agents in the first wave ac-
cumulate less private information prior to their choice.
We find that for large N , the expected social informa-
tion communicated by each decision is

E[R+(T )] ≈ 2E[
√
T/π] ≈ θ/

√
π lnN. (6)

Thus, as the population increases the size of the first
wave, a1, grows (Fig. 1d), but each first wave decision
provides less information (Fig. 1e). However, the loga-
rithmic decrease in the revealed information, R±(T ), is
outweighed by the nearly linear growth in the number
of agents, a1: Using Eqs. (3), (4) and (6), we find the
expected belief update, ĉ±1 ≡ E[c±1 ], of undecided agents
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FIG. 2. (Color online) Decision statistics for large ho-
mogeneous and dichotomous cliques. (a) Belief incre-
ment ĉ±1 of agents in the second wave in homogeneous cliques.
(b) Simulations of the probability the full homogeneous net-
work decides after the second wave as a function of size, N .
Chebyshev’s Inequality provides an upper bound on clique
size by which the probability is reached. Inset: Threshold θ
at which ĉ±1 = 2θ as clique size N is varied. (c) First de-
cision time for dichotomous threshold cliques for various γ.
(d) Fraction of accurate deciders in dichotomous threshold
cliques under consensus bias. (e) Belief increment of agents
in the second wave in dichotomous threshold cliques under
consensus bias. Clique size N = 15000 in panels (c–e).

in the second wave grows nearly linearly in N ,

ĉ±1 ≈
θ2N

2π lnN
. (7)

The expected update per agent in the second wave fol-
lowing a correct or incorrect decision, ĉ+1 or ĉ−1 , is pos-
itive: If the first decision is correct, more than half the
network is in the first wave, and both (2E[a1] − N − 2)
and R+(T ) are positive in Eq. (3). Both of these terms
are negative when the first decision is wrong. Thus the
second wave is self-correcting : When the network is suf-
ficiently large, ĉ±1 > 2θ (see Fig. 2a), and we expect
all undecided agents to make the correct choice in the
second wave, regardless of the choice of the first agent.
As Eq. (3) approximates the average belief update, we
cannot use it to estimate the probability that the entire
clique will decide. However, we can use Chebyshev’s In-
equality to show that when N ≥ 4π(θ2(1 − x))−1 the
entire network decides by the second wave with proba-
bility at least x (See Fig 2b).

In sum, the first choice triggers a wave of a1 decisions in
agreement with the first decider, whether right or wrong.
In large networks, all remaining agents decide correctly in
the second wave, regardless of the first agent’s decision.

Heterogeneous Populations. A population of decision
makers is rarely homogeneous. Some people are quick to
make decisions based on little evidence. Others require
substantial information before making a choice [29, 30].
Some have access to high quality information, while oth-
ers rely on poor evidence. How does such diversity im-
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FIG. 3. (Color online) Balancing hasty and deliberate
decisions in cliques with dichotomous threshold dis-
tributions. (a) With too few low threshold agents, the re-
maining agents do not receive sufficient information to decide
after the first wave; (b) With many low threshold agents, a
wrong first decision can sway much of the network; (c) With
the right number of low threshold agents, a small number
of hasty agents follows a wrong first decision, but the differ-
ence between agreeing and disagreeing low threshold agents
is just sufficient for the rest of the clique to choose correctly.
(d) Fraction of the clique choosing accurately for a dichoto-
mous threshold clique. (e) Fraction of the clique deciding by
the end of the second wave. Isoclines indicate time to first
decision. Clique size N = 15000 in (b) and (c).

pact decisions of the collective?

Here we focus on diversity in the amount of evidence
agents require to make a choice by assuming agents’ deci-
sion thresholds are distributed on an interval [θmin, θmax].
Agents with a low threshold are more likely to decide
first, but also to make a wrong choice [31]. The ensuing
exchange of social information depends on assumptions
agents make about each other. While collective deci-
sions in heterogeneous networks under consensus bias are
similar to those in homogeneous populations, omniscient
agents can leverage quick, unreliable decisions to improve
the response of the population.

a. Dichotomous threshold distribution. The case
when all agents have either a high or a low threshold
is tractable and sheds light on more general examples.
Before a decision the belief of each agent evolves accord-
ing to Eq. (1) on a symmetric interval with absorbing
boundaries at −θi < 0 < θi. We assume that γN agents
share threshold θmin and (1− γ)N share threshold θmax

for some 0 < θmin < θmax and γ ∈ (0, 1). The first
decision is then most likely made by an agent with a
low threshold, and is thus fast but unreliable. We there-

fore use the approximation E[T ] ≈ θ2min

4 ln (γN) which breaks

down when 0 < γ � 1 but works well otherwise (see
Fig. 2c). The probability that this decision is correct is
(1 + exp(−θmin))−1 [17].

The social network is homogeneous from the perspec-
tive of an observer under consensus bias. We thus again
expect about half of the network to follow the first choice,
whether right or wrong. Indeed, the expected size of the
first wave is given by an expression similar to Eq. (5),

E[a1] ≈ N−1
2

(
1 ± θmin√

4π ln γN

)
. The expected belief incre-

ment in the second wave is ĉ±1 ≈
θ2minγN
2π ln γN which is analo-

gous to Eq. (7), and is governed primarily by the timing
of the first choice (See Fig. 2e). In large populations
decisions happen quickly, before the belief distributions
can interact with the boundaries. Therefore the expected
belief increment, ĉ±1 , is approximately independent of the
observer’s threshold : Following the first wave low and
high threshold agents make the same update.

As in homogeneous networks, the size of the expected
update, ĉ±1 , grows with population size. When the up-
date exceeds 2θmax, we expect all agents to decide by the
second wave. If the first decision is correct, the entire
clique follows. A wrong first choice is followed by the first
wave constituting about half the network (see Fig. 2d),
while the second wave decides correctly. Under consensus
bias, dichotomous cliques behave as if they were homoge-
nous with threshold θmin: Uninformed agents govern de-
cisions, leading to fast, inaccurate choices.

In contrast, omniscient agents correctly weigh evi-
dence revealed by a hasty first decider. We expect about
half of the low threshold agents, γN/2, to decide in the

first wave. Indeed, we find E[a1] ≈ γN−1
2

(
1± θmin√

4π ln γN

)
.

The evidence revealed by a single low threshold agent
is unlikely to sway high threshold agents. However, if
the subpopulation of low threshold agents is sufficiently
large, the difference between those convinced and uncon-
vinced by the first choice can trigger a correct decision
in the rest of the population (See Fig. 3b,c).

Thus, in a network of omniscient agents, hasty ob-
servers again govern the speed of the first decision and
mostly comprise the first wave. The remaining agents can
then observe the choices of the early adopters to make the
right decision. The fraction of wrong decisions can thus
be smaller than in homogeneous networks.

In finite populations this argument requires γ and θmin

be large enough for the first wave to convince the re-
mainder of the population (Fig. 3a), but small enough
to buffer the majority of the population from following
an incorrect first choice (Fig. 3b). We thus expect that
the population makes the best decisions at intermediate
values of γ and θmin (star in Fig. 3d). A balance be-
tween these cases is reached when ĉ−1 = 2θmax, which
corresponds to a fraction of low threshold agents given
by

γ ≈ 4πθmax

N

lnN

θ2min

.

Almost all agents decide by the second wave (Fig. 3e).
Thus a finite population with dichotomous thresholds

can sacrifice a small fraction of early adopters so most
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chosen to maximize accuracy for each θmin value. (b) Over
a range of possible first decision times, heterogeneous cliques
give better accuracy than homogeneous ones with omniscient
social updating. Here, N = 15000 and θmax = 1.

of the population makes a fast, correct choice. Agents in
heterogenous networks can thus decide more quickly, and
outperform agents in homogeneous networks in recover-
ing from a wrong first choice (Figs. 3c and 4).

b. Different threshold distributions. We next consider
N agents with thresholds, θi, following different distri-
butions supported on the interval [θmin, θmax]. The ex-
pected time to the first decision is again governed by the
smallest threshold, θmin, and under consensus biased the

size of the first wave is E[a1] ≈ N−1
2

[
1± θmin√

4π lnN

]
, with

the sign determined by the first decision. In either case,
the increment to the undecided agents after the first wave
is given by Eq. (7) with θmin replacing θ. For sufficiently
large N , ĉ1 > 2θmax. Therefore, under consensus bias
the clique again behaves as a homogeneous clique with
threshold θmin.

The omniscient case is more complicated. Numerical
simulations show the trends observed in the dichotomous

case persist for a large class of threshold distributions:
Hasty agents decide first, and deliberate agents decide
based on which early adopters followed the first choice
(See Figs. 4), leading to faster and more accurate choices
than in homogeneous networks.

Conclusion. Our model of collective decision making
is analytically tractable and shows how diverse popula-
tions can make quicker, more accurate decisions than ho-
mogeneous ones. Previous models of collective decision-
making have either ignored temporal aspects of evidence
accumulation [6, 19, 32] or did not describe rational
agents [33, 34]. Our model incorporates both aspects
and can serve as a baseline to understand when and how
decisions depart from rationality [35].

There are a number of ways to include more realistic
features in the model: Observations can be correlated,
rather than conditionally independent, resulting in
correlated noise in Eqs. (1) and (2) [36]. Agents could
accumulate evidence at different rates, resulting in each
having different drift and diffusion coefficients [17, 20].
The framework we provide can be extended to these
cases to probe how different conditions influence deci-
sions.
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