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Synopsis
I am an applied mathematician and a biophysicist. My main interests lie in elucidating fundamental principles
underlying a variety of biological processes using mathematical models. My current work is in two fields:
synthetic biology and decision making. My work in synthetic biology consists of describing collective
behavior in populations of microbial consortia dynamically evolving in microfluidic devices. From a biological
perspective, this involves many different levels of description from the biochemical reactions that control gene
network activation states at the single cell level to communication between bacterial cells through quorum
sensing molecules. On the decision-making side, I seek to generalize the classical drift-diffusion framework for
evidence accumulation by an optimal observer to include a network of optimal observers making independent
observations and exchanging social information. Hence, we seek to understand the circumstances where
collective decision-making benefits the members of a group and where it is detrimental. Previously, for my
doctoral work, I worked on problems involving the transport and delivery of materials to localized areas
within cells and understanding the consequences of breakdown in these transport processes. From a modeling
perspective, my work draws upon a wide range of techniques from applied mathematics and theoretical
physics including differential equations, dynamical systems theory, stochastic processes, numerical analysis,
Bayesian inference, and non-equilibrium statistical physics.

Cell Alignment in Extended Microfluidic Traps
A central goal of synthetic biology is the construction of practical, engineered genetic circuits for medical and
industrial applications. Critical to this goal is the elucidation of the fundamental mechanisms that govern
gene regulation at all levels. Populations of E. coli cells trapped in microfluidic devices can be used to study
genetic signaling networks and understand how information is communicated between genetic modules
distributed across two or more strains of bacteria. In extended microfluidic traps, populations are not well-
mixed; therefore, spatiotemporal patterning of distinct bacterial strains plays an important role in inter-strain
communication. For example, multi-strain consortia of E. coli in open, rectangular microfluidic traps form
single-strain bands orthogonal to the long side of the trap (Fig. 1) [1]. The distribution of such bands can affect
the efficiency of communication between distinct strains of bacteria due to the limited diffusivity of quorum
sensing molecules. Understanding the mechanisms underlying this emergent order is therefore important for
engineering synthetic gene circuits with desired properties.

We developed an analytically tractable spatial Moran model (SMM) that captures essential features of the
dynamics of growing populations of E. coli cells and provides insight into the emergence of these single-strain
bands [2]. These capsule-shaped bacterial cells tend to grow more slowly in crowded environments; that is,
cells in the center of a trap grow slower than cells along the boundary [4]. We model the microfluidic trap
as an M× N lattice and the cells as oriented particles on the lattice. The cells are in one of two orientations:
horizontal or vertical. These cells grow along the major axis of their bodies asymmetrically. We assume a cell’s
growth rate in a given direction is a monotonically decreasing function of the distance the cell is from the
boundary in that direction. The SMM shows that provided this growth-rate dampening due to crowding is
sufficiently strong, cells align orthogonally to the long side of the trap, as seen in experiments. However, if the
dampening is sufficiently small, a phase transition occurs and cells align parallel to the long side of the trap.

The time evolution of the microscopic configurations of the lattice are described by a master equation.
Specifically, we characterize the time evolution of the lattice by tracking occupation numbers for each lattice
site. Denote by nij ∈ {0, 1} the state of the ij-th site at time t, so that nij = 1 ( nij = 0) corresponds to a site
occupied by a vertical (horizontal) cell. The probabilities pij(t) = P(nij = 1 at time t) evolve according to the
master equation
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Figure 1: (a) A monolayer of E. Coli in an open microfluidic trap with cells aligned orthogonally to the trap’s long side. Colors represent distinct
strains. (b) In our spatial Moran model cell growth is directional and location dependent: The outlined vertical cell can grow only upward or
downward at a location-dependent rate. The red arrow indicates growth direction, so the cell above will be replaced by a descendant of the outlined
cell. We model single strain populations, but use the same color for mother and daughter cells for visualization.

dpij

dt
= v+κ (i− 1)p(n(i−1)j = 1, nij = 0, t) + v−κ (i + 1)p(n(i+1)j = 1, nij = 0, t)

− h+κ (j− 1)p(ni(j−1) = 0, nij = 1, t)− h−κ (j + 1)p(ni(j+1) = 0, nij = 1, t),
(1)

where p(nij, nkl , t) are joint occupation probabilities at time t. The first two terms in Eq. 1 correspond to
horizontal-to-vertical cell transitions through displacement by a descendant from a cell either above or below.
The second two terms describe the opposite transition. The rates v±κ (i) represent a vertical cell’s propensity
to grow toward the top or the bottom of the trap when it is located in the ith row. The rates h±κ (j) are
defined similarly for horizontal cells in the lattice. Growth rates are determined by a one-parameter family
of functions, with the parameter κ ∈ [0, ∞) characterizing the population’s impact on growth. This family
can be general, but we assume that growth rates are positive and satisfy three conditions: (1) There exists a
λ ∈ (0, ∞) such that v±κ (i), h±κ (j)→ λ as κ → 0 for all i, j; (2) Maximal growth rates occur at the boundaries,
v+κ (M) = v−κ (1) = h+κ (N) = h−κ (1) = λ; (3) v±κ (i), h±κ (j) decrease monotonically with distance from the
boundary that maximizes their value. Condition (1) states that cells grow uniformly at rate λ in the absence
of interactions (κ = 0). Conditions (2) and (3) reflect a cell’s tendency to grow toward the nearest boundary
and growth rate dampening from cells obstructing growth in a certain direction. Stochastic simulations of the
SMM are in agreement with solutions to Eq. 1 in the different parameter regimes. In particular, both suggest
that there exists a critical κ∗ value wherein a transition between alignment orthogonally to the long boundary
and parallel to the long boundary occurs.

To calculate κ∗ explicitly, we average Eq. 1 over all lattice sites to obtain a mean field model. Averaging
the master equation over all i, j shows that n, the fraction of vertical cells, obeys a logistic equation,

dn
dt

= 2
(

v̄κ

(
1− 1

M
)
− h̄κ

(
1− 1

N
))

︸ ︷︷ ︸
µ(κ,M,N)

n(1− n), (2)

and n(t) = exp(µ(κ, M, N)t)/(1 + exp(µ(κ, M, N)t). v̄κ, h̄κ are the average growth rates in the vertical, and
horizontal directions, respectively. This agrees with the averaged solutions to Eq. 1 and SMM simulations
averaged over realizations (see Fig. 2).

From Eq. 2 it is clear that the all-vertical and all-horizontal equilibria exchange stability when M = N.
However, Eq. 2 provides insight into the underlying mechanism of spatial order. In particular, the growth rate,
µ(κ, M, N), manifests as a competition between cell-cell interactions in the average growth rates and boundary
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effects. Therefore, there exists a critical κ∗ value at which boundary effects dominate cell-cell interactions. For
fixed M, N, this transition point satisfies µ(κ∗, M, N) = 0.

We show how κ∗ scales with trap size for different interaction kernels. To reduce parameter number,
we fix M and N and use a single parameter, s, to determine lattice dimensions as sM× sN. We find that for
exponential interaction kernels of the form v+κ (i) = λe−κ(M−i),

κ∗ ∼ 2/(MNs2) ∼ s−2. (3)

For interaction kernels of the form v+κ (i) = λ/(1 + κ(M− i)α), α ∈ (0, ∞),

κ∗ =
(α + 1)(N −M)

sα+1MN(Nα −Mα)
∼ s−(α+1)

for large s.
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Figure 2: (a) Comparison of MF solutions with averages over realizations of the SMM (N = 20, M = 10) . (b) κ∗ as a function of s for different
interaction kernels. Dots represent κ∗ values from Eq. (2). X’s were obtained numerically from simulations of the SMM using bisection. Dashed
line were obtained using Eq. (3). Inset: κ∗ as a function of s for different aspect ratios, Γ ≡ M/N.

From a mathematical perspective, the SMM is of interest because it is completely solvable under a reason-
able mean-field approximation. That is, critical parameter values can be calculated explicitly as a function
of system size. Models that show emergence of patterns yet are completely solvable are rare. Furthermore,
the model formulation is general and can be useful in analyzing the dynamics of anisotropically growing
multi-species systems in confined environments.

Main result: Our SMM shows that equilibrium alignment of cells is a tug-of-war between boundary effects and
growth-rate dampening: boundary effects pull cell alignment to be opposite of what is observed experimentally.
Hence, our model suggests that the driving force for orthogonal alignment of cells is growth-rate modulation
at the cellular level. Importantly, my work suggests that crowding-induced growth-rate modulation must
occur at the individual cell level so that orthogonal bands of cells form at the population level, as observed
in the experiments. Furthermore, my work suggests that cell interactions in such a trap are strong. Bringing
this idea to light will be important for experimentalists because the consideration of cell interactions is an
important factor in designing experiments.

Future Work
Our model is simple enough to modify to describe a variety of situations. Strains communicate via

quorum sensing molecules. We hope to couple our model of E. coli cells in extended microfluidic traps
with equations describing the dynamics of quorum sensing molecules and how it impacts communication
between cells of distinct strains. For example, we can incorporate quorum sensing dynamics in the master
equation formulation. Let qk(i, j) denote the concentration of a quorum sensing molecule at site ij that has
been produced by a cell belonging to the strain k. The dynamics can be described by

dqk(i, j)
dt

= λpk
ij − γqk(i, j) + D(q(i + 1, j) + q(i− 1, j) + q(i, j + 1) + q(i, j− 1)− 4q(i, j)), (4)
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Experimentally, the set up for more than two strains of bacteria is very challenging. Our model is therefore
ideal to predict what may happen when a large number of distinct strain populations interact in extended
microfluidic traps.

At the experimental level, we hope to control the emergence of spatiotemporal patterns in extended
microfluidic devices. The means of achieving such control will be elucidated by our model coupled with
agent-based models and continuum models. For example, we have predicted that by allowing distinct strains
of bacteria to have distinct cellular aspect ratios, we can control which strain in the microfluidic trap achieves
a higher fitness level, thereby driving the other to extinction.

Finally, since the SMM’s formulation is quite general, its applicability to a variety of situations is apparent.
For example, we can also examine spatiotemporal dynamics of cancer tumor development and how to treat
such tumors with virotherapy.

Decision-Making in Networks
A fundamental question in neuroscience is how organisms use sensory and social information to make
decisions. Yet few mathematical models of decision making account for both types of information. Popular
evidence accumulation models describe an ideal observer using a sequence of sensory measurements to
choose among alternatives [5]. However, these models describe an observer in isolation, whereas decisions are
often made in groups. For example, animals observe one another when they forage. Stock traders, while not
privy to all of their competitor’s information, can still observe each other’s decisions. It is thus natural to ask
how an observer should combine private measurements with social information to make decisions.

We developed a normative model for collective decision making on a network of agents performing a
two-alternative forced choice (2AFC) task [3]. We assume that each agent accumulates evidence privately until
it makes a choice (Fig. 3). This choice is observed by all of its neighbors on the network. Thus, information
flow is described by a directed network, and each deciding agent communicates its decision to those observing
it. In this simplified setup, the computations of rational agents can be intuitively explained, but can become
extremely complex. For example, when decision thresholds are not symmetric, even non-decision on an agent’s
part provides evidence in favor of one of the two choices to the remaining agents. In recurrent networks,
exchange of social information manifests as an equilibration process until all agents understand where each
agent’s proclivity for a given decision lies–a common knowledge situation. Our model bridges abstractions
used in the economics literature and the evidence accumulator models used widely in neuroscience.
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Figure 3: A pair of unidirectionally coupled agents deciding between the states H+ and H− on the basis of private and social evidence. (a)
Schematic of the information flow in the network. Agent 1 accumulates its own observations which result in a sequence of decision states that is
observed by agent 2. In addition, agent 2 gathers its own observations to make a decision. (b) Sample trajectories for the log likelihood ratios (LLRs)
of the agents. Decisions are made when an agent’s belief (LLR) crosses a threshold, θ± = ±θ in this case. Agent 1’s expression of its decision is
reflected in an abrupt jump in agent 2’s belief.

Main Result: Our model predicts that including social information in one’s evidence for making a decision
increases the accuracy of one’s decisions and lowers the decision time required to make that decision. These
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benefits are more pronounced when observations are very noisy. When observations are reliable, social
information is less beneficial.

Future Work
We have a general framework for describing social information flow through a network of N agents.

We seek to use this model to describe situations where social information is beneficial or detrimental. For
example, ideal observers arranged in a particular network topology may undergo herding behavior wherein a
decisive individual choosing a suboptimal decision causes all other members of the network to agree with
them, thereby cause collective suboptimal behavior. On the other hand, a decisive individual’s decision may
be overturned by social information if other members of the network understand that no one agrees with the
initial decider.

The stochastic models developed in [3] are all discrete. It is of mathematical interest develop a continuum
model of collective optimal decision making. Such models are particularly useful when analyzing decision-
making in all-to-all networks, or cliques. Consider a clique of N agents. The ith agent’s evidence yi, 1 ≤ i ≤ N
evolves according to the Langevin equation

dyi = gdt + σdWi (5)

where g is a drift component stemming from the Kullback-Leibler divergence between the measurement
distributions of the environment conditioned on the true state of the environment H± and Wi is a Wiener
process. The stochastic processes are independent until the first decision is made. It turns out that the expected
time for the first decision amongst N agents evolving according to Eq. 5, τN , scales with N as

τN =
θ2

4 ln N
, (6)

where θ represents a threshold value corresponding to the amount of evidence required for an agent to make a
decision. Hence Eq. 5 is defined on the interval (−θ, θ) with absorbing boundaries. yi ≥ θ means agent i has
selected H+ as its decision, and yi ≤ −θ means agent i has selected H− as its decision.

Once the first decision is made, all remaining agents receive a kick to their evidence equal to±θ, depending
on which decision the first decider made. Such a decision will trigger a wave of deciders that agree with
the initial decider. The remaining undecided agents after the first kick now have more information in their
decision making. They know how many agents agreed with the first decider and how many are cynical still. If
the number of agents undecided after the kick of evidence is greater than the number of agents agreeing with
the first decider, the remaining agents will choose the opposite choice. A natural question therefore is to ask
what fraction of the clique chooses correctly as N → ∞.

Reliability Failure in Glucose-Insulin Systems
At a fundamental level, the goal of biomedicine is about robust, stable prediction. For instance, pharmaceutical
interventions are introduced when they are predicted to, at best, help, and at worst, do no harm to a patient.
Robust, stable, reliable prediction rests on the following assumption: given a set of initial conditions and
parameters, the response to an input will be the same and that some amount of noisiness in the input,
initial conditions, or parameters will not significantly affect the statistical properties of the response. These
assumptions are fundamental to how biomedicine works. For example, the exact timing of a treatment—up to
seconds—or the exact size of the intervention—100 versus 100.1 mg of a drug—will not wildly change the
outcome or the treatment.

Rank-one-based shear-induced chaos or uncertainty (SIU) [6] challenges this fundamental assumption
because it destroys predictability of the response of a system to a given input subject to minimal noise. SIU, or
the sensitivity of an invariant density to perturbations of an orbit along the orbit, occur under at least two
conceptual scenarios: (i) when there is an invariant set that corresponds to a periodic orbit and a related Hopf
bifurcation, and (ii) near a fixed point with invariant-like sets that resemble invariant sets corresponding to a
periodic orbit (Fig. 4). The practical implication of SIU is the exact timing of the intervention, or the exact size
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of the intervention, can significantly alter the statistical properties of the response, making the system difficult
to predict, understand or interpret.
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Figure 4: Schematic of SIU. In the absence of shear, perturbing a system away from a limit cycle causes relaxation back to a limit cycle that
is diffeomorphic to the original. In the presence of shear, perturbing a limit cycle will cause it to bend, twist, and stretch. As more and more
perturbations are introduced to the system, the attracting set becomes a strange attractor.

Many physiologically and clinically important systems are oscillatory, meaning they correspond to noisy
periodic orbits, have damping, and are driven. For example, the glucose-insulin system, a subsystem of the the
endocrine system, has continuous periodic orbits under continuous nutrition infusion, fixed points, at least one
Hopf-like bifurcation allowing for the potential to estimate shear, damping from nutrition utilization, driving
from nutrition input, and perturbations off of periodic orbits from meal ingestion. These are all features
present in standard rank-one, SIU analysis. Additionally, as is the case for many important physiological
systems, the glucose-insulin system has delay variables, a property that is not well understood in the context
of rank-one theory. It is within this context that we can explore the potential impact that SIU can have on
prediction and understanding in both a clinical and a physiological setting.

A standard model of glucose-insulin dynamics is the Ultradian model [7]. The primary state variables are
the glucose concentration G, the plasma insulin concentration Ip, and the interstitial insulin concentration Ii;
these three state variables are appended with a three stage filter (h1, h2, h3) which reflects the response of the
plasma insulin to glucose levels. The resulting ordinary differential equations take the form:

dIp

dt
= f1(G)− E

( Ip

Vp
− Ii

Vi

)
−

Ip

tp
(7a)

dIi

dt
= E

( Ip

Vp
− Ii

Vi

)
− Ii

ti
(7b)

dG
dt

= f4(h3) + IG(t)− f2(G)− f3(Ii)G (7c)

dh1

dt
=

1
td

(
Ip − h1

)
(7d)

dh2

dt
=

1
td

(
h1 − h2

)
(7e)

dh3

dt
=

1
td

(
h2 − h3

)
(7f)

The major parameters include: (i) E, a rate constant for exchange of insulin between the plasma and remote
compartments; (ii) IG, the exogenous (externally driven) glucose delivery rate; (iii) tp, the time constant for
plasma insulin degradation; (iv) ti, the time constant for the remote insulin degradation; (v) td, the delay time
between plasma insulin and glucose production; (vi) Vp, the volume of insulin distribution in the plasma; (vii)
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Vi, the volume of the remote insulin compartment; (viii) Vg, the volume of the glucose space. f1(G) represents
the rate of insulin production; f2(G) represents insulin-independent glucose utilization; f3(Ii)G represents
insulin-dependent glucose utilization; f4(h3) represents delayed insulin-dependent glucose utilization;

f1(G) =
Rm

1 + exp( −G
Vgc1

+ a1)
(8)

f2(G) = Ub(1− exp(
−G

C2Vg
)) (9)

f3(Ii) =
1

C3Vg
(U0 +

Um −U0

1 + (κ Ii)−β
) (10)

f4(h3) =
Rg

1 + exp(α( h3
C5Vp
− 1))

(11)

κ =
1

C4
(

1
Vi
− 1

Eti
) (12)

The nutritional driver of the model IG(t) is continuously fed to the system.

IG(t) = I0 + ∑
n∈N

Anδ(t− Tn), (13)

where I0 is a basal nutritional input for the system, Tn is the time of the nth feeding, and An is the amount of
carbohydrate in that meal. In Fig. 5 we perform simulations where we fix An = A and Tn = T and investigate
dynamical behavior of the Ultradian model. We find behavior that is consistent with SIU in this model, which
suggests that maintaining stable glucose levels for diabetic patients may be more challenging than it seems, as
glucose oscillations grow chaotic if time between meals grows.
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Figure 5: Time series (top row), glucose invariant densities (second row) and projection of phase space (third and bottom rows) for the kicked
Ultradian oscillating system. Also plotted in the phase space are two sample trajectories after a kick (a) T = 20 minutes. The limit cycle is stable.
(b) T = 200 minutes. We see chaotic behavior. Here, td = 12 min and A = 10 mg/dL. Other parameter values are as in [7].

(last updated October 8, 2019 at 11:45pm) 7 of 9



Main Result: Periodically kicking the stable limit cycle observed in glucose-insulin dynamics results in chaotic
behavior when the kicks are sufficiently far apart temporally (representing meal ingestion). The amplitudes of
the kicks similarly induce chaos in glucose-insulin limit cycles. Glucose levels more reliably oscillate when
inter-meal times are relatively short and carbohydrate amounts per meal are small. This could have important
clinical implications in terms of treatment of diabetic patients in the ICU.

Future Work
Physiological systems are inherently noisy. Our analysis up until now has consisted of periodic perturba-

tions of a limit cycle. Even in such a case chaotic behavior has emerged. However, next we seek to include
noise in the system in a variety of cases. For example, we will let inter-meal times be Poisson distributed, and
the nutritional driver of the system will be taken to be Gaussian-distributed around a given value. We seek to
learn how including noise alters glucose-insulin limit cycle behavior.

Oscillations are ubiquitous in physiological systems. We hope to implement a framework studying
shear-induced uncertainty in a variety of physiologic oscillations.

Doctoral (Previous) Work
{ Axonal Length Sensing. We provided a theoretical framework for a hypothesized mechanism for axonal

length sensing proposed in [8]. The hypothesis is that axonal length information is encoded into the
frequency of a chemical oscillation in the axon–as axonal length increases chemical oscillation frequency
decreases. We model this as an excitatory-inhibitory chemical network where the excitation and inhibition
between the chemical species are coupled to chemical transport with molecular motors. This manifests as a
system of delay differential equations or, more specifically, a system of advection-diffusion equations [9].
We show the dependence of chemical oscillation frequency upon axonal length and provide a theoretical
framework for how information encoded in the frequency of an oscillation can be extracted by the cell, i.e.
by using the chemical oscillation as a driver for a gene network [10].

{ Synaptic Democracy. In a series of papers [13, 14, 15, 16], we investigated the impact of allowing for
reversible delivery of vesicles to target sites on the equilibrium distribution of vesicles along a cell’s body.
The idea was introduced in a seminal paper [13] studying the impact of allowing for reversible delivery of
vesicles to en passant synapses of an axon–hence the verbiage synaptic democracy. Irreversible delivery of
vesicles, characterized by a simple advection-diffusion-degradation PDE, reaches an exponentially decaying
equilibrium profile for vesicles. This is inconsistent with experimental findings in the peripheral sensory
neurons of Drosophila [11, 12], where vesicle distribution is approximately uniform. In the model, allowing
for vesicle delivery to be reversible reproduces this result, providing a mechanistic description of how such
uniformity may be attained. This phenomena persists in more complicated domains such as Cayley trees
and higher dimensions [15]. It also persists when synapses are gated [16] and when inter-motor interactions
are considered [14].

{ Flagellar Length Control. We developed a sophisticated model of flagellar length control that captures
qualitative features of the experimental time series data on the import of intraflagellar transport (IFT) trains
into flagella such as non-exponential inter-event interval statistics and time-dependent Fano factors. In
particular, we modeled influx of IFT using a Cox process. Injection times of IFT into flagella were taken to
be Poisson distributed with a rate determined by the concentration of particles at a structure known as the
basal body where the IFTs are constructed. The latter evolves according to a stochastic birth-death process;
hence, the Poisson rate itself is a stochastic process. The length of the flagellum modulates the binding rate
of cytoplasmic molecules that construct IFTs to the basal body. We therefore developed a mathematical link
between the length-dependent regulation of IFT transport and counting processes. We also predicted that
reducing the number of binding sites on the basal body, by for example pharmacologically introducing an
agonist, significantly affects length regulation of basal body binding [17].
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Teaching and Outreach
A large part of being a researcher is to ensure that the generations after us maintain interest in buzzing

scientific fields and propel research forward rather than stalling it. To that end, I make every effort to introduce
my undergraduate students to the types of mathematical research occurring via the assignment of projects.
For example, a large part of the Partial Differential Equations course I taught was the completion of a project.
The project completed by the student was chosen from a laundry list of topics chosen by me. In addition to
common fields such as fluids and electric potentials, the projects also covered areas of biology such as pattern
formation, molecular motor transport, and chemical reaction theory. In this manner they are introduced to the
ways in which math can be used to provide insights into concrete, scientific problems.

I am also a firm believer that students shy away from mathematical sciences due to not being exposed to
the applicability of mathematical sciences at a young age. I have participated in Science Day at the University
of Utah where I was given the opportunity to speak to middle schoolers and high schoolers about the power
of mathematical modeling and how it could be used to help solve some of the big problems in the scientific
community.

References
[1] R. N. Alnahhas, J. J. Winkle, A. J. Hirning, B. R. Karamched, W. Ott, K. Josic̀, and M. R. Bennett. Spatiotemporal Dynamics of

Synthetic Microbial Consortia in Microfluidic Devices. ACS Synthetic Biology. 8: 2051-2058. (2019)

[2] Karamched, B. R., Ott, W., Timofeyev, I., Alnahhas, R. N., Bennett, M. R., and Josić, K. Moran Model of Spatial Alignment in
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