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Fast decisions reflect biases; slow decisions do not
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Decisions are often made by heterogeneous groups of individuals, each with distinct initial biases and access
to information of different quality. We show that in groups of independent agents who accumulate evidence the
first to decide are those with the strongest initial biases. Their decisions align with their initial bias, regardless
of the underlying truth. In contrast, agents who decide last make decisions as if they were initially unbiased
and hence make better choices. We obtain asymptotic expressions in the large population limit quantifying how
agents’ initial inclinations shape early decisions. Our analysis shows how bias, information quality, and decision
order interact in nontrivial ways to determine the reliability of decisions in a group.
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I. INTRODUCTION

Evidence accumulation models describe how different or-
ganisms integrate information to make choices [1]. They
capture the dynamics of decision making, including the trade-
off between speed and accuracy [2–6]. Such models can
also be used to understand how decisions are made in so-
cial groups, whether individuals observe each other’s choices
[7–10] or act independently [11].

Evidence accumulation is often modeled using biased
Brownian motion with the quality of evidence determining
the magnitude of drift and diffusion. A choice is triggered
when the process crosses a threshold. This threshold controls
the timing and accuracy of agent decisions, but questions
remain about how the order of choices in a group is related
to their accuracy [12]. Members of a group who access the
highest-quality information will tend to make the fastest and
most accuracte decisions [9]. However, even before accumu-
lating evidence, humans and other animals often exhibit initial
biases which may reflect previously acquired information but
could also be erroneous. Biases could also be innate [13],
due to mistaken. assumptions [14], or influenced by previous
decisions [15]. Here we ask how individuals’ initial biases in
a group affect the order and accuracy of their choices. When
is a decision driven by an agent’s initial bias as opposed to
accumulated evidence?
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We show that in groups of agents who only differ in their
initial biases, early decisions are made by agents with the most
extreme predispositions. This effect occurs even for groups
of modest size (e.g., N = 10) but intensifies in large groups
and can be described with precise asymptotics. Early choices
agree with the agents’ initial bias, regardless of the evidence
they can access. Early decisions are also noise driven: If
the noisiness of the evidence accumulation process differs
between agents, then the noisier agents often decide first, even
when they start with a smaller bias. On the other hand, late
decisions do not depend on the initial bias and are more likely
to be correct. These effects hold generically but not in the case
of initially unbiased agents [9].

II. MODEL DESCRIPTION

We first assume that each individual in a population of
N agents decides between two hypotheses: H+ or H− by
computing the conditional probabilities, P(H±|evidence). In
the limit of rapid, independent observations that provide weak
evidence, the log likelihood ratio, or belief, of agent i in
the group, Xi = log P(H+|evidencei )

P(H−|evidencei )
, evolves as biased Brownian

motion [1,16] [see Fig. 1(a)],

dXi = μi dt +
√

2Di dWi, (1)

where the drift, μi, and diffusion coefficient, Di, capture the
strength and noisiness of the evidence, respectively [17]. For
all agents the correct choice (H ∈ H±) is given by the sign of
the drift (sgn[μi] = ±1).

Although Eq. (1) can be derived as a model of an ideal
decision maker, it is often used as a phenomenological model.
The model can explain the variability in response times, the
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FIG. 1. Initial bias determines the choice of early deciders. (a) Evolution of a subset (20) of N = 104 agent beliefs, each of whom has even
odds of initially being unbiased or biased [P(Xj (0) = xi ) = 0.5, xi = 0, −0.5]. The first agent (light orange, star head) of N = 104 decides
according to their initial bias and makes the wrong decision at T1 ≈ 0.01. The last agent (dark orange, hexagonal head) decides correctly at
T104 ≈ 10. (b) Probability that one of the agents with the largest initial bias decides first as a function of population size, N . Solid curves
were determined by numerical quadrature [Eq. (A4) with initial biases Xj (0) drawn with uniform probability from values listed in the legend];
black crosses denote results of a stochastic simulation with 106 trials. Inset: Log-log plot of the same results with asymptotics (dashed curves)
computed from Eq. (3). Throughout, agents use identical thresholds ±θ = ±1, drift μ = 1, and diffusivity D = 1.

speed-accuracy trade-off, as well as the impact of evidence
quality and biases on choice [4,18,19]. Thus, initial bias,
Xi(0), cannot be assumed to be zero. The inherent biases of
humans and other animals are difficult to eliminate or train
away [13,20], reflect choice and reward history [15,19,21],
reveal mistaken assumptions about the present choices [14], or
arise from fluctuations or processes unrelated to the decision
task.

We denote by y the initial data for a generic agent, while
Xi(0) is the initial bias of a specific agent. Agent i accumu-
lates evidence, and its beliefs evolve according to Eq. (1),
deciding when its belief reaches one of two thresholds, ±θ ,
at decision time τi := inf{t > 0 : Xi(t ) /∈ (−θ, θ )}. This de-
cision, denoted by di = H±, is determined by the sign of
the threshold reached, sgn[Xi(τi )]. If decision criteria differ
between agents, then an appropriate rescaling of Xi(0), μi, and
Di allows us to assume that all agents use the same thresholds
[1].

III. AGENTS WITH THE MOST EXTREME INITIAL
BIASES DECIDE FIRST

We show that in large groups agents whose initial biases
are closest to one of the thresholds make the earliest decisions.
We first assume observers are identical except for their initial
biases [μi = μ and Di = D in Eq. (1)]. We denote by Ti the
ith decision time so that T1 � T2 � · · · � TN , where Ti = τn(i)

and n(i) is the index of the ith agent to decide. Hence, the
index of the first decider is n(1).

For simplicity, we assume that each agent starts with one
of finitely many initial beliefs, {x0, x1, . . . , xI−1}, sampled
with probability qi = P(Xj (0) = xi ) for i = 0, . . . , I − 1. The
distance of the initial belief xi to the closest threshold is
Li = min{θ − xi, xi + θ}. Let i = 0 be the index of the most

extreme initial belief held by an agent so that L0 < Li for
i �= 0.

For a fixed number of possible initial beliefs, I , the first to
decide in a large group is an agent with the largest initial bias
[Fig. 1(a)], in the sense that

P(Xn(1)(0) = x0) → 1 as N → ∞. (2)

More precisely, in Appendix C we show that

P(Xn(1)(0) = xi ) ∼ ηi(ln N )(βi−1)/2N1−βi (3)

as N → ∞ for each i �= 0, where

βi = (Li/L0)2 > 1,

ηi = qi

qβi
0

exp

[√
βi

2D

(
μiL0 − μ0Li

)]√
βiπβi−1�(βi) > 0,

and μi = ±μ if xi ≷ 0. The same statement holds if n(1) is
replaced by n( j) in Eq. (3) but with a change in the prefac-
tor, ηi (see Appendix C). Thus, the probability that the first
decision is not made by the agent with the most extreme
initial belief decreases as a negative power of the population
size N [Fig. 1(b)]. The approximation given by Eq. (3) is in
excellent agreement with the true probabilities when N � 103

[see Fig. 1(b), inset]. Moreover, the probability that the agents
with the most extreme initial beliefs make the first decision
is close to unity already for N ≈ 102 and occurs the majority
of the time when N � 10 as long as initial beliefs are well
separated and drift is not too strong.

The choice of the fastest decider agrees with their
initial bias, e.g., P(Xn(1)(T1) = θ ) → 1 as N → ∞ if θ =
argminx∈±θ |x0 − x| [see Figs. 2(a) and 2(b)]. Similar results
hold when initial beliefs are drawn from a continuous distri-
bution (see Appendix E and next section): Early decisions of
biased agents tend to be less accurate [11,22].
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FIG. 2. First decider accuracy is determined by its initial bias. (a) The accuracy of the first decider as a function of population size, N, for
different initial biases, y, obtained by quadrature. Curves are ordered by the proximity of the initial bias y of the first decider to the correct
threshold +θ . The drift, and hence the correct decision, are positive. Initial bias is uniformly distributed over legend values. (b) Under the
same assumptions a small deviation from an unbiased initial belief strongly affects the probability of a correct first decision when N is large.
(c) Drift weakly affects the first decision in populations with biased agents (y = θ/4 here) when N is large. See Appendix D for decision
polarity formulas. (d) In large populations in which all agents have the same initial bias, y = θ/2, but different diffusivities, early deciders
(here first and third) have the shortest diffusive timescale. X’s mark averages of stochastic simulations over 106 trials.

In contrast, the probability that a single agent—or one
chosen randomly without regard to decision order—decides
incorrectly can be made arbitrarily small by increasing the
drift or threshold [1]. In large populations with biased agents,
drift and diffusion impact the probability of the first decision
only through the prefactor in Eq. (3), ηi, and thus decrease
in importance as population size diverges. If even a small
part of a large population holds an initial bias, then early
decisions are determined by the most extreme bias [Fig. 2(b)]
regardless of the drift [Fig. 2(c)]. On the other hand, if all
deciders are initially unbiased [Xi(0) = 0 for all i], then the
probability that the first decider makes a correct choice is
[1 + exp(−μθ/D)]−1 [1].

IV. HETEROGENEOUS POPULATION AND CONTINUOUS
DISTRIBUTION OF INITIAL BIASES

Our conclusions extend to populations of agents with het-
erogeneous distributions of initial biases, drifts, diffusivities,
and thresholds. We again assume that each agent starts with
one of finitely many initial beliefs, Xi(0) ∈ {x0, x1, . . . , xI−1}
with drift and diffusivity sampled from a finite set of fixed

size. For each agent we define the diffusive timescale,

Si = L2
i

4Di
> 0. (4)

By assumption, the timescales Si follow a discrete distribution
with support on a finite set 0 < s0 � s1 � s2 � s3 · · · � sJ ,

and Sn( j) refers to the timescale of the jth agent to decide [see
Fig. 2(d)]. We denote by s the diffusive timescale of a generic
agent.

In large populations, early deciders are those with the
shortest diffusive timescales. In particular, we show in
Appendix F that for every ε > 0 and fixed j � 1,

N1−s1/s0−ε 
 P(Sn( j) > s0) 
 N1−s1/s0+ε as N → ∞, (5)

where we use the notation f 
 g to mean limN→∞ f /g = 0.
We can thus conclude that N1−s1/s0−ε = o(P(Sn( j) > s0)) and
P(Sn( j) > s0) = o(N1−s1/s0+ε ) as N → ∞.

These results agree with our earlier conclusion: If all agents
share the same diffusivity, then the fastest deciders are the
agents who start closest to their decision thresholds. This is
true regardless of the quality of the evidence they receive.
Diffusivity can reduce the effective distance to the threshold
according to Eq. (4). The speed of the fastest deciders is
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FIG. 3. Late deciders make choices as if they held no initial bias. (a) The quasistationary distribution q(x) for various drifts μ represents the
belief distribution for agents who remain undecided for a long time. (b) For large N , decision accuracy monotonically increases with decision
order. The accuracy of late deciders approaches the accuracy of a single, initially unbiased agent. Here, all agents have initial bias θ/3, and
on each trial, P(H = H+) = 0.5. (c) In large groups even a large initial bias does not impact the accuracy of later agents’ choices. Here initial
biases are sampled with uniform probability from (−θ, θ ). (d) The last decider begins to behave as if they were unbiased for N = O(10).
Unless otherwise noted, μ = 1, D = 1, and initial beliefs are uniformly distributed over the values given in the legend.

determined by their initial proximity to threshold and noisi-
ness of their integration process, regardless of the drift, μi.
Our results also hold for models with nontrivial drift, like
leaky Ornstein-Uhlenbeck models that describe integration in
uncertain environments [23,24].

Our conclusions also pertain to agents with a continuous
initial belief distribution. Suppose that an agent’s initial belief
is sampled from a smooth probability distribution, ν(x), with
support on (a, b) with −θ < a < b < θ . Assuming

P(τ � t |X (0) = x) ∼ A(x)t pe−C(x)/t

as t → 0+ uniformly for all x ∈ [a,b] where

C(x) = L(x)2

4D
, L(x) = min{θ − x, θ + x},

and A(x) > 0, it follows that (see Appendix E)

P(τ � t ) ∼
{

A(b)νb�(αb + 1)t p+αb+1e−C(b)/t if b > |a|
A(a)νa�(αa + 1)t p+αa+1e−C(a)/t if |a| > b

,

where �(z) denotes the gamma function. Define the event E =
{a + ε < X (0) < b − ε} 0 < ε 
 1 and suppose we want
to estimate P ≡ P(a + ε < Xn(1)(0) < b − ε). We can show
that (see Appendix E)

FE (t ) ≡ P(τ � t ∩ E )

∼ A(b − ε)ν(b − ε)t p+1e−C(b−ε)/t as t → 0+.

Substituting this into Theorem 1 in Appendix B shows that the
first deciders have the most extreme beliefs. That is, P → 0
as N → ∞.

V. LATE DECIDERS MAKE DECISIONS AS IF INITIALLY
UNBIASED

We expect in large populations the inaccuracy of early
deciders to be balanced by higher accuracy of late deciders
[11]. Thus, we next determine the probability that the last
agent to decide makes a correct decision. In Appendix G we
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show that this probability has an intuitive form,

P(Xn(N )(TN ) = θ ) →
∫ θ

−θ

pθ (x)q(x) dx as N → ∞. (6)

Here pθ (x) is the probability that a single agent with initial
bias X (0) = x makes a correct decision, and q(x) is the quasi-
steady-state distribution [25] of beliefs evolving according to
Eq. (1). Thus the decision of the last decider is made as if
they forgot their actual initial bias and instead sample an initial
belief from the quasistationary distribution, q(x). Equation (6)
is general and can be extended to arbitrary domains.

Figure 3(a) shows a examples of the quasi-steady-state
distribution, q(x). This is the distribution of beliefs of agents
who have failed to make a decision for a long time and have
“forgotten” their initial bias. Given this distribution, it is not
immediately clear what the eventual decision of these late
deciders will be as follows: Their beliefs, as captured by
q(x), favor the right decision, and the drift in Eq. (1) pushes
these beliefs towards the correct threshold. Surprisingly, the
resulting trajectories have the same probability of crossing the
correct threshold as if the agents were initially unbiased, i.e.,
as if P[Xn(N )](0) = 0. More precisely, we show in Appendix G
that P(Xn(N )(TN ) = θ ) → [1 + exp(−μθ/D)]−1 as N → ∞,
the probability that a single, initially unbiased decider makes
a correct decision [see Figs. 3(b) and 3(d)] [1]. Thus, by
forgetting their initial bias late deciders make decisions based
only on accumulated evidence. The probability that an agent
with a large initial bias makes a late decision is small. But
should this happen, the initial bias will have little impact on
their decision [see Fig. 3(c)].

VI. EXTENSION TO MULTIPLE ALTERNATIVES

We can extend these results to decisions between k alter-
natives. Equation (1) again describes the evolution of beliefs,
but now Xi(t ), μi ∈ Rk−1 and Wi is a vector of independent
Wiener processes [26]. Each belief evolves on a domain,
� ⊂ Rk−1, with k boundaries [27], each associated with one
of the alternatives. Agent i chooses alternative j if its belief,
Xi(t ), crosses the associated boundary first. The boundaries
that lead to the best decisions are difficult to find analytically
[28], but their exact shape is immaterial for our result.

In Appendix F we show that Eq. (3) holds for general
domains in arbitrary dimensions (see Fig. 4). We therefore
reach our earlier conclusions: In large homogeneous popula-
tions, the agents holding the most extreme initial beliefs make
the first decisions, and their choices are consistent with their
initial biases. Our conclusions about the late decisions also
carry over to agents facing multiple choices: Late deciders
make choice as if they sampled their initial belief from the
quasistationary distribution on �.

VII. DISCUSSION

Our decisions are often influenced by information we
obtained previously and predilections we develop. In drift-
diffusion models, prior evidence and predispositions can
be represented by a shift in the initial state. We have
shown that these initial biases determine early decisions
and have diminishing influence on later decisions. Our main
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sions similarly in large groups. Beliefs about three options evolve
on an equilateral triangle. Here θ is the closest distance from the
center of the triangle (burgundy, central ring) to the boundary. The
initial bias is the distance from the triangle center to the initial belief,
Xi(0). As N increases, the probability that the most biased agent
chooses first grows. Curves are computed by averaging 106 stochastic
simulations. Inset: Trajectories from a trial with biases sampled with
equal probability from {θ/2, θ/4, θ/8}. The first agent to decide
(light orange, star head) has the largest initial bias. The belief of the
last decider (dark orange, hexagonal head) explores the space before
reaching a threshold.

conclusions generally hold for populations of about a hun-
dred, and our asymptotic results agree well with numerical
solutions for populations larger than a few hundred agents.
In extreme cases—when the drift, μ, is very large, or the
distribution of initial beliefs very narrow—larger populations
may be required for our observations to hold.

Agents in our model make decisions based on their initial
beliefs, and accumulated evidence. The threshold that their
belief crosses can be linked to the perceived accuracy of their
decision [1], but the actual accuracy of their choice could
be degraded by an erroneous initial bias and related to the
temporal order of their decision. Though early decisions are
not necessarily less accurate [7], our work identifies a clear
case in which hasty choices tend to be the most unreliable.
Our findings also suggest a means of weighting choices of
biased agents by decision order in a large group to improve
collective decisions [29].

In social groups the exchange of social information be-
tween agents [30,31] or correlations in the evidence [11] can
affect these results. We have shown previously that knowing
whether or not other agents have decided can be informative,
even when no other social information is shared [22]. Here
we assumed that each agent acts as if unaware of the others.
It is well known that early decisions can trigger information
cascades [32–34], and early adopters can have an outsized
influence on the diffusion of technology and ideas in social
networks [35]. Even weak social evidence can have a strong
impact when shared early [7,36]. It remains unclear precisely
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how our results would be affected by such correlations, al-
though we expect that under certain conditions they remain
qualitatively true.

Our analysis of the fastest and slowest decisions joins sev-
eral recent works which highlight the importance of extreme
statistics in diverse biophysical systems. For example, the
earliest receptor bindings may enable a single cell to locate
a source [37,38] much more accurately than later receptor
bindings [39]. The fastest receptor activations may also con-
tribute to the effectiveness of kinetic proofreading for antigen
discrimination by T cells [40], while the slowest primordial
follicle growth activations determine menopause timing [41]
and their extreme statistics shed light on the apparent “waste-
ful” follicle oversupply [42].

Ramping activity of individual neurons during decision
making has been observed across the brain [43,44] (although
see Ref. [45]). Such dynamics may reflect the underlying evi-
dence accumulation process preceding a decision and is often
modeled by a drift-diffusion process. Decisions are thought
to be triggered by the elevated activity of sufficiently many
choice-related neurons [46]. These results combined with our
previous work on the impact of correlations [11] suggest that
early decisions tend to exhibit lower accuracy. However, a key
feature of neural circuits is their recurrent connectivity, which
could help neural circuits reduce or even prevent the negative
effects of extreme events [47].

Our theory also applies more generally to independently
evolving drift-diffusion processes on possibly unbounded
domains [48]: In large populations early threshold cross-
ings reflect only the initial states, agnostic to other system
attributes, while late crossings are independent of initial
states and reflect the quasistationary distribution. Hence, early
crossings reflect initial biases providing fast reactions needed
for time-sensitive biophysical processes [49]. If time allows,
then quorum sensing processes that weight passages by order
could be used [50], managing population level trade-offs be-
tween speed and accuracy.
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APPENDIX A: MATHEMATICAL PRELIMINARIES

Suppose {(τn, Zn)}n�1 is an independent and identically
distributed (iid) sequence of realizations of the pair of (pos-
sibly correlated) random variables (τ, Z ). We have in mind
that τ is the decision time [or first passage time (FPT)] of
some decider whose stochastic evolution of beliefs is denoted
by {X (t )}t�0 and Z is a vector containing information about
this decider, such as their random initial position, drift, diffu-
sivity, and decision made. Define the cumulative distribution
function (CDF) of τ ,

F (t ) := P(τ � t ).

Further, for any event E that is in the σ algebra generated by
Z , define

FE (t ) := P(τ � t ∩ E ).

In words, E is any event for which we can know whether
or not it occurred by knowing Z . For example, we are inter-
ested in events E like E = {X (0) = θ/2}, E = {X (0) � 0},
E = {X (τ ) = θ}, etc.

For a given N � 1, let n( j) ∈ {1, . . . , N} denote the (ran-
dom) index of the jth fastest decider out of the first N deciders
to make a decision. That is, suppose we order the first N FPTs
(or first decision times),

T1,N � T2,N � · · · � TN−1,N � TN,N ,

where Tj,N denotes the jth fastest FPT,

Tj,N := min
{{τ1, . . . , τN }\ ∪ j−1

i=1 {Ti,N }}, j ∈ {1, . . . , N}.
(A1)

Then n( j) is such that

τn( j) = Tj,N . (A2)

In the examples of interest, the FPTs, τ, have continuous
probability distributions (i.e., F (t ) is a continuous function)
so that the event τn∗ = τn′ < ∞ for n∗ �= n′ has probability
zero so there is no ambiguity in Eq. (A2).

Since we have the sequence {(τn, Zn)}n�1, we denote as En

the event E as it pertains to the nth element in the sequence
{(τn, Zn)}n�1. For example, if E = {X (0) = θ/2}, then En =
{Xn(0) = θ/2}. Similarly, En( j) is the event E as it pertains to
Zn( j).

Throughout the Appendix, we use the notation
∫

f (t ) dg(t )
to denote the Riemann-Stieltjes integral of a function f with
respect to a function g.

Proposition 1. For any j ∈ {1, 2, . . . , N} (denoting an
agent by the order j of their decision), we have that

P(En( j) ) = j

(
N

j

) ∫ ∞

0
[F (t )] j−1[1 − F (t )]N− j dFE (t ). (A3)

In the case j = 1 (i.e., the fastest decider), Proposition 1
implies

P(En(1) ) = N
∫ ∞

0
[1 − F (t )]N−1 dFE (t ). (A4)

Since 1 − F is a decreasing function, Eq. (A4) implies that
the short-time behavior of F and FE determine the large N
behavior of P(En(1) ). More generally, Proposition 1 implies
that the short-time behavior of F and FE determine the large
N behavior of P(En( j) ) for 1 � j 
 N .

In the case j = N (i.e., the slowest decider), Proposition 1
implies

P(En(N ) ) = N
∫ ∞

0
[F (t )]N−1 dFE (t ). (A5)

Since F is an increasing function, Eq. (A5) implies that the
large-time behavior of F and FE determine the large N be-
havior of P(En(N ) ). More generally, Proposition 1 implies that
the large-time behavior of F and FE determine the large N
behavior of P(En(N− j) ) for 1 
 N − j.
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APPENDIX B: SOME INTEGRAL ASYMPTOTICS

The following proposition is useful for estimating the large-N behavior of some integrals of the form in Eq. (A3) and was
proved in Ref. [48] (see Proposition 2 in Ref. [48]). Throughout the Appendix, “ f ∼ g” denotes f /g → 1 (e.g., as N → ∞ or
as t → 0).

Proposition 2. Assume C+ > C > 0, A > 0, and p, q ∈ R. Then there exists a δ0 > 0 so that for all δ ∈ (0, δ0], we have∫ δ

0
t q−2e−C+/t

(
1 − At pe−C/t

)N−1
dt ∼ η(ln N )pβ−qN−β as N → ∞,

where

β = C+/C > 1, η = Cq−1(ACp)−β�(β ) > 0,

and �(β ) := ∫ ∞
0 zβ−1e−z dz denotes the gamma function.

The following result estimates integrals of the form in Eq. (A3) for 1 � j 
 N assuming that F (t ) and F+(t ) have short-time
t behavior that is characteristic of diffusion.

Theorem 1. Assume F (t ) and F+(t ) are bounded, nondecreasing, continuous from the right, and satisfy

F (t ) ∼ At pe−C0/t as t → 0+, (B1)

F+(t ) ∼ Btqe−C+/t as t → 0+, (B2)

where C+ > C0 > 0, A > 0, B > 0, and p, q ∈ R. Then for any fixed integer j � 1, we have

j

(
N

j

) ∫ ∞

0
[F (t )] j−1[1 − F (t )]N− j dF+(t ) ∼ η( j)(ln N )pβ−qN1−β as N → ∞,

where

β := C+/C0 > 1, η( j) := B(C0)q−pβA−β�( j)�(β + j) > 0, (B3)

and �(x) := ∫ ∞
0 zx−1e−z dz denotes the gamma function.

Notice that the asymptotic behavior found in Theorem 1 as N → ∞ is independent of j � 1, except for the constant prefactor
η( j). Further, this prefactor is an increasing function of j and satisfies

η( j) = ( j − 1)!�(β + j)

�(β + 1)
η(1), j � 1.

The asymptotic behavior in Eq. (B1) and (B2) is typical for diffusion, but computing the prefactors A and B and the powers p
and q can be challenging [51]. Indeed, these constants depend on the details of the system (e.g., drift, space dimension, geometry
of the domain, etc.). However, the constants in the exponents C0 and C+ are more universal and can be obtained in a very general
mathematical setting [52]. The following result yields estimates on the fastest deciders when we only know these constants,
which is equivalent to knowing the short-time behavior of F+(t ) and F (t ) on a logarithmic scale.

Theorem 2. Assume F (t ) and F+(t ) are bounded, nondecreasing, continuous from the right, and satisfy

lim
t→0+

t ln F (t ) = −C0 < 0, lim
t→0+

t ln F+(t ) � −C+ < 0, (B4)

where C+ > C0 > 0. Then for every ε > 0,

j

(
N

j

) ∫ ∞

0
[F (t )] j−1[1 − F (t )]N− j dF+(t ) = o(N1−β+ε ) as N → ∞, (B5)

where

β := C+/C0 > 1.

If, in addition, we assume that

lim
t→0+

t ln F+(t ) = −C+ < 0, (B6)

then for every ε > 0,

N1−β−ε = o

{
j

(
N

j

)∫ ∞

0
[F (t )] j−1[1 − F (t )]N− j dF+(t )

}
as N → ∞.

The following result estimates integrals of the form in Eq. (A3) for 1 
 N − j � N assuming that F (t ) and fi(t ) = F ′
i (t )

have large-time t behavior that is characteristic of diffusion in a bounded domain.
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Theorem 3. Assume F (t ) ∈ [0, 1) is continuous and nondecreasing and fi(t ) is continuous and bounded and

F (t ) = 1 − ce−λt + h.o.t. as t → ∞, fi(t ) = λcie
−λt + h.o.t. as t → ∞,

where λ > 0, c > 0, ci > 0. Then for any fixed j � 0, we have that

(N − j)

(
N

N − j

)∫ ∞

0
[F (t )]N− j−1[1 − F (t )] j fi(t ) dt → ci

c
as N → ∞.

APPENDIX C: PROOF OF EQ. (3)

We now apply Theorem 1 to obtain Eq. (3). Suppose the belief of each agent evolves independently according to the following
stochastic differential equation (SDE),

dX = μ dt +
√

2D dW, (C1)

where μ ∈ R is a constant drift, D > 0 is a constant diffusivity, and W = {W (t )}t�0 is a standard Brownian motion. Define the
FPT,

τ := inf{t > 0 : X (t ) /∈ (−θ, θ )},
for some threshold θ > 0. Assume that the initial distribution P(X (0) = xi ) of each agent is a sum of Dirac masses at a finite set
of points {x0, x1, . . . , xI−1},

P(X (0) = x) =
{

qi if x = xi for some i ∈ {0, 1, . . . , I − 1},
0 if x /∈ ∪I−1

i=0 xi.
,

Letting Fi(t ) ≡ FX (0)=xi (t ) = P(τ � t ∩ X (0) = xi ), we have that [48]

Fi(t ) ∼ qiAit
1/2e−Ci/t as t → 0+, (C2)

where

Ci = (Li )2

4D
,

and

Ai =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

exp
(−μLi

2D

)√
4D

π (Li )2 if xi < 0

exp
(

μLi

2D

)√
4D

π (Li )2 if xi > 0

[
exp

(−μLi

2D

) + exp
(

μLi

2D

)]√
4D

π (Li )2 if xi = 0,

where Li is the distance to the closest threshold from xi,

Li = min{θ − xi, xi + θ}.
Further, we assume 0 ∈ {0, 1, . . . , I − 1} is the index of the unique starting location closest to a threshold

L0 = min{L0, L1, . . . , LI−1} < Li if i �= 0,

then

F (t ) ∼ F0(t ) as t → 0+.

We claim that

P(Xn(1)(0) = x0) → 1 as N → ∞, (C3)

Thus, when N is large the first decider out of many deciders is always the one with the most extreme initial bias. Using the
integral representation in Proposition 1 and applying Theorem 1 yields

P(Xn(1)(0) = xi ) ∼ ηi(1)(ln N )(βi−1)/2N1−βi as N → ∞ for each i �= 0,

where

βi = (Li/L0)2 > 1,
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and

ηi(1) =

⎧⎪⎨
⎪⎩

qi

q
βi
0

√
πβi−1

βi
�(βi + 1) exp

[√
βi

2D (μiL0 − μ0Li )
]

if xi �= 0,

qi

q
βi
0

√
πβi−1

βi
�(βi + 1)

{
exp

[√
βi

2D (μiL0 − μ0Li )
] + exp

[√
βi

2D (−μiL0 − μ0Li )
]}

if xi = 0,

where μi = ±μ if xi ≷ 0.

APPENDIX D: FIRST DECISION AGREES WITH INITIAL BIAS

The analysis above shows that the first agent to decide in a large group has the most extreme initial bias. We now show the
intuitive result that this first decider’s decision agrees with their initial bias. Without loss of generality, assume that the most
extreme initial bias is negative, x0 < 0. Letting F+(t ) = P(τ � t ∩ X (τ ) = +θ ), we have

F+(t ) =
∑

i

P(τ � t ∩ X (τ ) = +θ | X (0) = xi )qi

∼ P(τ � t ∩ X (τ ) = +θ | X (0) = xi+ )qi+

∼ qi+Ai+t p
i+e−Ci+ /t as t → 0+,

where i+ ∈ {1, . . . , I} is the index of the starting location closest to +θ . Using the integral representation in Proposition 1 and
applying Theorem 1 yields

P(Xn(1)(τ ) = +θ ) ∼ η
(1)
i+ (ln N )(βi+ −1)/2N1−βi+ as N → ∞.

APPENDIX E: CONTINUOUS INITIAL BELIEF DISTRIBUTION

In Appendix C, we showed that the first of many deciders have the most extreme initial beliefs in the case that the population
has a discrete initial belief distribution. We now generalize this calculation to the case that the deciders have a continuous initial
belief distribution. In particular, suppose that the decider’s initial belief (position) has a smooth probability density ν(x) with
support (a, b) with −θ < a < b < θ . Suppose that

ν(x) ∼ (x − a)αaνa as x → a+, ν(x) ∼ (b − x)αbνb as x → b−,

where the coefficients are positive, νa > 0, νb > 0, and the powers ensure that ν is integrable, αa > −1, αb > −1. In light of
(C2), suppose that

P(τ � t | X (0) = x) ∼ A(x)t pe−C(x)/t as t → 0+, uniformly for all x ∈ [a, b],

where

C(x) = [L(x)]2/(4D) > 0, L(x) = min{θ − x, θ + x},
and A(x) > 0 for all x ∈ [a, b].

It follows that

F (t ) = P(τ � t ) =
∫ b

a
P(τ � t | X (0) = x)ν(x) dx ∼ t p

∫ b

a
A(x)ν(x)e−C(x)/t dx as t → 0+.

We thus need to estimate the small time t asymptotics of the integral

I :=
∫ b

a
A(x)ν(x)e−C(x)/t dx,

which is an exercise in Laplace’s method [53]. If b > 0, then for any ε ∈ (0, b), we have∫ b

0
A(x)ν(x)e−C(x)/t dx ∼

∫ b

b−ε

A(x)ν(x)e−C(x)/t dx ∼ A(b)e−C(b)/tνb�(αb + 1)tαb+1 as t → 0+.

Similarly, if a < 0, then for any ε ∈ (0, |a|), we have∫ 0

a
A(x)ν(x)e−C(x)/t dx ∼

∫ a+ε

a
A(x)ν(x)e−C(x)/t dx ∼ A(a)e−C(a)/tνa�(αa + 1)tαa+1 as t → 0+.

Putting this together, we have that if b > |a|, then

F (t ) ∼ A(b)νb�(αb + 1)t p+αb+1e−C(b)/t as t → 0+,

and similarly if |a| > b or |a| = b.
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With these estimates, we can apply Theorem 1 to obtain estimates that the fastest decider(s) have extreme initial beliefs. In
particular, suppose we want to estimate

P(a + ε < Xn(1)(0) < b − ε) for some small 0 < ε 
 1,

which is the probability that the fastest decider does not have extreme initial beliefs. If we define the event

E = {a + ε < X (0) < b − ε},
then using the notation of Appendix A, we have that

FE (t ) := P(τ � t ∩ E ) =
∫ b−ε

a+ε

P(τ � t | X (0) = x)ν(x) dx ∼ t p
∫ b−ε

a+ε

A(x)ν(x)e−C(x)/t dx as t → 0+,

which can be estimated as above using Laplace’s method [53]. In particular, if b > |a|, then

FE (t ) ∼ A(b − ε)ν(b − ε)t p+1e−C(b−ε)/t as t → 0+,

assuming ν(b − ε) > 0, and similarly if |a| > b or |a| = b. With this short-time behavior of FE (t ), we can then plug this into
Theorem 1 to show that the first deciders have the most extreme initial beliefs.

APPENDIX F: HETEROGENEOUS POPULATION WITH MULTIPLE ALTERNATIVES

We next consider the generalized case where the beliefs of the agents in the population evolve as processes with (possibly
space-dependent) drift, diffusion coefficient, initial position, and even domain (in their own arbitrary space dimension d � 1).
Suppose the belief of the ith decider evolves according to the following d-dimensional SDE,

dXi = μi(Xi ) dt +
√

2Di dWi, (F1)

where μi : Rd → Rd is a possibly space-dependent drift, Di > 0 is the diffusion coefficient, and W (t ) ∈ Rd is a standard
Brownian motion in d-dimensional space.

Let L > 0 denote an agent’s (random) shortest distance they must travel to hit the closest target and let D > 0 denote the
agent’s diffusion coefficient. Define the random timescale

S = L2

4D
> 0.

Suppose that S has a discrete distribution on a finite set

0 < s0 < s1 < s2 < s3 · · · < sI ,

where

P(S = si ) = qi > 0,

I∑
i=0

qi = 1.

Since we have N � 1 iid agents indexed from n = 1 to n = N , we let Sn denote the value of S for the nth agent and Sn( j) the
value of S for the jth fastest to decide.

We have that [52]

lim
t→0+

t ln P(τ � t ) = −s0 < 0, lim
t→0+

t ln P(τ � t ∩ S = si) = −si < 0.

Hence, Proposition 1 and Theorem 2 imply that for any fixed j � 1 and i ∈ {1, . . . , I} and any ε > 0,

N1−si/s0−ε 
 P(Sn( j) = si ) 
 N1−si/sε
0 as N → ∞, (F2)

where we use the notation f 
 g to mean lim f /g = 0. That is, in more traditional notation,

N1−si/s0−ε = o(P(Sn( j) = si )) as N → ∞,

P(Sn( j) = si) = o(N1−si/s0+ε ) as N → ∞.

In the special case that the agents all move in one space dimension and the drifts are spatially constant (but may differ between
agents), we can get the constant and logarithmic prefactors on the decay of P(Sn( j) = si) as N → ∞.

The result in Eq. (F2) says that in a large population if all the agents have the same diffusion coefficient, then the fastest
deciders started closest to their decision thresholds (targets). If we allow the diffusion coefficients to vary between agents, then
(F2) implies that the fastest deciders started close to their decision thresholds and/or they had big diffusion coefficients.
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APPENDIX G: SLOWEST DECIDERS

Suppose the beliefs of the iid agents diffuse in some d-dimensional spatial domain U ⊂ Rd and can be absorbed at one of
m � 2 targets V0, . . . ,Vm−1 and let κ ∈ {0, . . . , m − 1} indicate which target the decider eventually hits. Here, we will think of the
m targets as parts of the d − 1 dimensional boundary of the domain, and assume that hitting one of the targets triggers a decision.
Following Refs. [54,55], suppose the beliefs of the deciders evolve as stochastic process {X (t )}t�0 that diffuse according to the
SDE

dX (t ) = −∇V [X (t )] dt +
√

2D dW (t ), (G1)

with reflecting boundary conditions. In Eq. (G1), the drift term is the gradient of a given potential, V (x), and the noise term
depends on the diffusion coefficient D > 0 and a standard d-dimensional Brownian motion (Wiener process) {W (t )}t�0. The
survival probability conditioned on the initial position,

S(x, t ) := P(τ > t | X (0) = x),

satisfies the backward Kolmogorov (also called backward Fokker-Planck) equation,

∂

∂t
S = LS, x ∈ U,

S = 0, x ∈ targets,

∂

∂n
S = 0, x ∈ reflecting boundary (if there is one),

S = 1, t = 0. (G2)

In Eq. (G2), the differential operator L is the generator (i.e., the backward operator) of Eq. (G1),

L = −∇V (x) · ∇ + D�,

and ∂
∂n is the derivative with respect to the inward unit normal n : ∂U → Rd .

Using the following weight function of Boltzmann form,

ρ(x) := e−V (x)/D∫
U e−V (y)/D dy

, (G3)

one can check that the differential operator L is formally self-adjoint on the weighted space of square integrable functions (see,
for example, Ref. [55]),

L2
ρ (U ) :=

{
f :

∫
U

| f (x)|2ρ(x) dx < ∞
}
,

using the boundary conditions in (G2) and the following weighted inner product,

( f , g)ρ := ( f , gρ) =
∫

U
f (x)g(x)ρ(x) dx,

where ( f , g) = ∫
U f (x)g(x) dx denotes the standard L2-inner product (i.e., with no weight function). Expanding the solution to

(G2) yields,

S(x, t ) =
∑
n�1

(un, 1)ρe−λnt un(x) =
∑
n�1

(un, ρ)e−λnt un(x), (G4)

where

0 < λ1 < λ2 � . . . , (G5)

denote the (necessarily positive) eigenvalues of −L. The corresponding eigenfunctions {un(x)}n�1 satisfy the following time-
independent equation:

−Lun = λnun, x ∈ U, (G6)

and identical boundary conditions as S. Further, the eigenfunctions are orthogonal and are taken to be orthonormal, which means
that

(un, um)ρ = δnm ∈ {0, 1}, (G7)

where δnm denotes the Kronecker delta function (i.e., δnn = 1 and δmn = 0 if n �= m).
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If the initial distribution of an agent has probability measure μ0,

P(X (0) ∈ B) = μ0(B) =
∫

B
1 dμ0(x), B ⊂ U, (G8)

then the FPT τ has survival probability given by

S(t ) := P(τ > t | X (0) =d μ0) =
∫

U
S(x, t ) dμ0(x),

where the condition X (0) =d μ0 in the conditional probability merely denotes that X (0) has initial distribution given by μ0.
Hence, we obtain the following representation for the survival probability:

S(t ) =
∑
n�1

Ane−λnt =
∑
n�1

(un, ρ)(un, dμ0)e−λnt , (G9)

where the coefficients are given by the following integrals:

An := (un, 1)ρ

∫
U

un(x) dμ0(x), n � 1. (G10)

We have that the FPT τ to one of the targets has CDF

F (t ) = P(τ � t ) = 1 − P(τ > t )

= 1 −
∑
k�1

(uk, ρ)(uk, dμ0)e−λkt ,

If

pi(x) = P(κ = i|X (0) = x),

then

Fi(t ) := P(τ � t ∩ κ = i) = P(κ = i) − P(τ > t ∩ κ = i) = P(κ = i) −
∑
k�1

(uk, piρ)(uk, dμ0)e−λkt ,

and therefore

fi(t ) := F ′
i (t ) =

∑
k�1

λk (uk, piρ)(uk, dμ0)e−λkt

Applying Proposition 1 and Theorem 3 yields

P(κn(N− j) = i) → (u1, piρ)

(u1, ρ)
= (u1ρ, pi )

(u1, ρ)
as N → ∞.

Now, the solution to the forward Fokker-Planck equation is given by

p(x, t ) = P(X (t ) = dx | τ > t ) =
∑
k�1

e−λkt (uk, dμ0)ρ(x)uk (x).

Hence, u1(x)ρ(x)/(u1, ρ) is the quasistationary distribution (QSD), q(x), defined by

q(x) = lim
t→∞ P(X (t ) = dx | τ > t ) = lim

t→∞
P(X (t ) = dx ∩ τ > t )

P(τ > t )
= lim

t→∞

∑
k�1 e−λkt (uk, dμ0)ρ(x)uk (x)∑

k�1(uk, ρ)(uk, dμ0)e−λkt

= lim
t→∞

e−λ1t (u1, dμ0)ρ(x)u1(x)

(u1, ρ)(u1, dμ0)e−λ1t
= ρ(x)u1(x)

(u1, ρ)
.

Summarizing, we have shown that

P(κn(N− j) = i) →
∫

U
pi(x)q(x) dx as N → ∞. (G11)

1. The case of drift-diffusion processes in one dimension

For the one-dimensional example in which all the beliefs of all the agents evolve according to (C1), we can compute the QSD,
and find that

q(x) =
(
π2D2 + θ2μ2

)
cos( πx

2θ
)e

μ(θ+x)
2D

2πD2θ (e
θμ

D + 1)
.
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Further, it is straightforward to show that the probability that a decider reaches +θ before −θ conditioned on the initial belief
x ∈ [−θ, θ ] is

p1(x) := P(X (τ ) = +θ ) = 1

2

[
coth

(
θμ

D

)
− 1

]
e

μ(θ−x)
D

[
e

μ(θ+x)
D − 1

]
Therefore, applying (G11) and explicitly computing the integral yields

P(κn(N− j) = 1) →
∫ θ

−θ

p1(x)q(x) dx = 1

1 + e− θμ

D

= p1(0) as N → ∞.

Hence, the slowest deciders out of N � 1 deciders make a decision as if they were initially unbiased [i.e., as if X (0) = 0].

APPENDIX H: PROOFS

Proof of Proposition 1. Since {(τn, Zn)}n�1 are identically distributed, we have that

P(An( j) ) =
∑

distinct indices
n1 ,...,nN ∈{1,...,N}

P(max{τn1 , . . . , τn j−1} < τn j < min{τn j+1 , . . . , τnN } ∩ Anj )

= j

(
N

j

)
P(max{τ1, . . . , τ j−1} < τ j < min{τ j+1, . . . , τN } ∩ Aj ), (H1)

where the coefficient comes from noting that the number of terms in the sum is obtained by choosing the j fastest FPTs out of
N and then choosing which of those j will be the jth fastest. Define

τ
(Aj )
j =

{
τ j if Aj occurs,
+∞ if Aj does not occur,

so that if j < N ,

P(max{τ1, . . . , τ j−1} < τ j < min{τ j+1, . . . , τN } ∩ Aj ) = P(max{τ1, . . . , τ j−1} < τ
(Aj )
j < min{τ j+1, . . . , τN })

To handle the case j = N , we can simply replace +∞ by −∞ in the definition of τ
(Aj )
j .

Since {τn}n�1 are iid, we have that

P(max{τ1, . . . , τ j−1} < t ) = P(max{τ1, . . . , τ j−1} � t ) = [F (t )] j−1,

where we have used that F (t ) is continuous. Similarly,

P(min{τ j+1, . . . , τN } > t ) = [1 − F (t )]N− j,

Using that {τn}n�1 are independent, we have

G(t ) : = P(max{τ1, . . . , τ j−1} < t < min{τ j+1, . . . , τN })

= P(max{τ1, . . . , τ j−1} < t )P(t < min{τ j+1, . . . , τN })

= [F (t )] j−1[1 − F (t )]N− j .

Combining the above finally yields

P(An( j) ) = j

(
N

j

)
P(max{τ1, . . . , τ j−1} < τ

(Aj )
j < min{τ j+1, . . . , τN })

= j

(
N

j

)
E

[
G

(
τ

(Aj )
j

)]

= j

(
N

j

) ∫ ∞

0
[F (t )] j−1[1 − F (t )]N− j dFE (t ),

which completes the proof.
The proof of Theorem 1 is similar to the proof of Theorem 3 in Ref. [48].
Proof. Define the integral from t = a to t = b,

Ia,b :=
∫ b

a
[F (t )] j−1[1 − F (t )]N− j dF+(t ).
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Let ε ∈ (0, 1). By the assumptions in Eq. (B1) and (B2), there exists a δ > 0 so that

A−εt
pe−C0/t � F (t ) � A+εt

pe−C0/t for all t ∈ (0, δ), (H2)

B−εt
qe−C+/t � F+(t ) � B+εt

qe−C+/t for all t ∈ (0, δ), (H3)

where A±ε := A(1 ± ε) and B±ε := B(1 ± ε). Using Eq. (H2) and integrating by parts yields

I0,δ �
∫ δ

0
(A+εt

pe−C0/t ) j−1(1 − A−εt
pe−C0/t )N− j dF+(t )

= (A+εδ
pe−C0/δ ) j−1(1 − A−εδ

pe−C0/δ )N− jF+(δ)

+ (N − j)
∫ δ

0
(A+εt

pe−C0/t ) j−1(pt−1 + C0t−2)A−εt
pe−C0/t

(
1 − A−εt

pe−C0/t
)N− j−1

F+(t ) dt

− ( j − 1)
∫ δ

0
(A+εt

pe−C0/t ) j−1(pt−1 + C0t−2)
(
1 − A−εt

pe−C0/t
)N− j

F+(t ) dt

� (A+εδ
pe−C0/δ ) j−1(1 − A−εδ

pe−C0/δ )N− jF+(δ)

+ (N − j)
∫ δ

0
(A+εt

pe−C0/t ) j (pt−1 + C0t−2)
(
1 − A−εt

pe−C0/t
)N− j−1

B+εt
qe−C+/t dt

− ( j − 1)
∫ δ

0
(A+εt

pe−C0/t ) j−1(pt−1 + C0t−2)
(
1 − A−εt

pe−C0/t
)N− j

B−εt
qe−C+/t dt, (H4)

where we have used Eq. (H3) in the final inequality. The first term in the right-hand side of Eq. (H4) vanishes exponentially fast
as N → ∞. Using Proposition 2 to find the large N behavior of the second two terms in the right-hand side of Eq. (H4) and the
fact that Iδ,∞ vanishes exponentially fast as N → ∞ yields

lim sup
N→∞

j
(N

j

)
I0,∞

η j (ln N )pβ−qN1−β
� (1 + ε)

(1 − ε)β
.

The analogous argument yields the lower bound

lim inf
N→∞

j
(N

j

)
I0,∞

η j (ln N )pβ−qN1−β
� (1 − ε)

(1 + ε)β
.

Since ε ∈ (0, 1) is arbitrary, the proof is complete.
Proof. Define the integral from t = a to t = b,

Ia,b :=
∫ b

a
[F (t )] j−1[1 − F (t )]N− j dF+(t ).

By Eq. (B4), there exists a δ > 0 so that

e−(C0+ε)/t � F (t ) � e−(C0−ε)/t for all t ∈ (0, δ), (H5)

F+(t ) � e−(C+−ε)/t for all t ∈ (0, δ). (H6)

Using Eq. (H5) and integrating by parts yields

I0,δ �
∫ δ

0
e−( j−1)(C0−ε)/t

[
1 − e−(C0+ε)/t

]N− j
dF+(t )

= F+(δ)e−( j−1)(C0−ε)/δ[1 − e−(C0+ε)/δ]N− j

+ (N − j)(C0 + ε)
∫ δ

0
e−( j−1)(C0−ε)/t t−2e−(C0+ε)/t

[
1 − e−(C0+ε)/t

]N− j−1
F+(t ) dt

−
∫ δ

0
( j − 1)(C0 − ε)t−2e−( j−1)(C0−ε)/t

[
1 − e−(C0+ε)/t

]N− j
F+(t ) dt . (H7)
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The first term in the right-hand side of Eq. (H7) vanishes exponentially fast as N → ∞. To handle the second term in the
right-hand side of Eq. (H7), note that Eq. (H6) implies that∫ δ

0
e−( j−1)(C0−ε)/t t−2e−(C0+ε)/t

[
1 − e−(C0+ε)/t

]N− j−1
F+(t ) dt

�
∫ δ

0
e−( j−1)(C0−ε)/t t−2e−(C0+ε)/t

[
1 − e−(C0+ε)/t

]N− j−1
e−(C+−ε)/t dt . (H8)

Since the third term in the right-hand side of Eq. (H7) is nonpositive, applying Proposition 2 to Eq. (H8) and using Eq. (H7) and
the fact that Iδ,∞ vanishes exponentially fast as N → ∞ completes the proof of Eq. (B5).

If Eq. (B6) holds, then there exists a δ > 0 so that

e−(C0+ε)/t � F (t ) � e−(C0−ε)/t for all t ∈ (0, δ),

e−(C++ε)/t � F+(t ) � e−(C+−ε)/t for all t ∈ (0, δ). (H9)

Using Eq. (H9) and integrating by parts yields

I0,δ �
∫ δ

0
e−( j−1)(C0+ε)/t

[
1 − e−(C0−ε)/t

]N− j
dF+(t )

= F+(δ)e−( j−1)(C0+ε)/δ[1 − e−(C0−ε)/δ]N− j

+ (N − j)(C0 − ε)
∫ δ

0
e−( j−1)(C0+ε)/t t−2e−(C0−ε)/t

[
1 − e−(C0−ε)/t

]N− j−1
F+(t ) dt

−
∫ δ

0
( j − 1)(C0 + ε)t−2e−( j−1)(C0+ε)/t

[
1 − e−(C0−ε)/t

]N− j
F+(t ) dt

� F+(δ)e−( j−1)(C0+ε)/δ
[
1 − e−(C0−ε)/δ

]N− j

+ (N − j)(C0 − ε)
∫ δ

0
e−( j−1)(C0+ε)/t t−2e−(C0−ε)/t

[
1 − e−(C0−ε)/t

]N− j−1
e−(C++ε)/t dt

−
∫ δ

0
( j − 1)(C0 + ε)t−2e−( j−1)(C0+ε)/t

[
1 − e−(C0−ε)/t

]N− j
e−(C+−ε)/t dt . (H10)

The first term in the right-hand side of Eq. (H10) vanishes exponentially as N → ∞. Using Proposition 2 to estimate the second
two terms in the right-hand side of Eq. (H10) completes the proof.

Lemma 1. For fixed j ∈ {0, 1, . . . }, c > 0, λ > 0, and δ > 0, we have that

(N − j)

(
N

N − j

) ∫ ∞

1/δ

[
1 − ce−λt ]N− j−1e−( j+1)λt dt → 1

λc j+1
as N → ∞.

Proof. Changing variables

u = 1 − ce−λt , du = λce−λt dt

yields ∫ ∞

1/ε

[
1 − ce−λt ]N− j−1e−( j+1)λt dt = 1

λc j+1

∫ 1

1−ce−λt

uN− j−1(1 − u) j du

= 1

λc j+1

[
(N − j − 1)! j!

N!
−

∫ 1−ce−λt

0
uN− j−1(1 − u) j du

]
, (H11)

where we have used that
∫ 1

0 ua−1(1 − u)b−1 du = �(a)�(b)/�(a + b). Since the integral in Eq. (H11) vanishes exponentially
fast, the proof is complete.

Proof. Let ε ∈ (0, 1). By assumption, there exists δ > 0 so that

1 − (1 + ε)ce−λt � F (t ) � 1 − (1 − ε)ce−λt for all t � 1/δ,

λ(1 − ε)cie
−λt � fi(t ) � λ(1 + ε)cie

−λt for all t � 1/δ.

Defining the integral from t = a to t = b,

Ia,b :=
∫ b

a
[F (t )]N− j−1[1 − F (t )] j fi(t ) dt,
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we therefore have that

(1 − ε) j+1λcic
j
∫ ∞

1/δ

[
1 − (1 + ε)ce−λt ]N− j−1e−( j+1)λt dt � I1/δ,∞

� (1 + ε) j+1λcic
j
∫ ∞

1/δ

[
1 − (1 − ε)ce−λt ]N− j−1e−( j+1)λt dt .

Since I0,1/δ vanishes exponentially fast as N → ∞, Lemma 1 implies that(
1 − ε

1 + ε

) j+1 ci

c
� lim inf

N→∞
(N − j)

(
N

N − j

)
I0,∞ � lim sup

N→∞
(N − j)

(
N

N − j

)
I0,∞ �

(
1 + ε

1 − ε

) j+1 ci

c
.

Since ε ∈ (0, 1) is arbitrary, the proof is complete.

APPENDIX I: NUMERICAL SOLUTIONS

Numerical solutions were computed via trapezoidal quadrature on Eq. (A3) in Proposition 1. In each set of dynamics, we
rescaled the drift-diffusion process on [−θ, θ ] to the interval [0, �]. The probability density function for hitting the left boundary
in this system is [56]

f0(t ) := d

dt
F0(t ) = exp

(
− μx0

2D
− μ2t

4D

)
D

�2
φ

(
Dt

�2
,

x0

�

)
, (I1)

where

φ(s,w) :=
{∑∞

k=1 exp(−k2π2s)2kπ sin(kπw),

(4πs3)−1/2 ∑∞
k=−∞(w + 2k)exp

[ − (w+2k)2

4s

]
.

(I2)

The expressions in Eq. (I2) are equivalent but have distinct utility: the top expansion converges quickly for large s while the
bottom expansion converges quickly for small s. Hence, we utilize both expressions to more accurately compute probabilities
associated with slow and fast deciders, respectively.

Integrating Eq. (I1) yields

F0(t ) =
∫ t

0
f0(t ′) dt ′ = exp

(
−μx0

2D

)
�

(
Dt

�2
,

x0

�

)
with long- and short-time expansions of �(s,w) given by

�(s,w) =
∫ s

0
φ(s′,w) ds′

=
⎧⎨
⎩

∑∞
k=1{1 − exp[−(b + k2π2)s]} 2kπ

b+k2π2 sin(kπw),∑∞
k=−∞

sgn(2k+w)
2

{
e−

√
b
D |2k+w|erfc

( |2k+w|√
4s

− √
bs

) + e
√

b
D |2k+w|erfc

( |2k+w|√
4s

+ √
bs

)}
,

where b = (μ�/2D)2. By symmetry one can determine the
corresponding probability density and cumulative distribu-
tion functions for hitting the right boundary. Altogether, we
acquire long- and short-time expressions for the cumulative
distribution function of an agent making a decision,

F (t ) := F0(t ) + F1(t ),

where numerical solutions are illustrated, we use the short-
time expressions of φ and � for 10−10 � t � 1 and the
complementary long-time expressions for 1 < t � 100, dis-
cretizing each time interval into 103 log-spaced points. We
consider 103 terms in each series expansion. Moreover, we
take � = 1 and unless otherwise stated D = 1. Finally, where
more than one but finitely many initial beliefs are considered,
we scale the probability functions according to the corre-
sponding initial distribution as outlined in Appendix C.

Specific details of figures with numerical solutions are as
follows: In Fig. (b) we illustrate in color Eq. (A4) where
FE = F as defined above with Xn(1)(0) = y. The black curve,
which contains the remaining mass of the total probability, is
computed as the sum of the colored curves subtracted from
one. In Figs. 2(a)–2(c) we illustrate the probability that the
first decider chooses the decision at X (T1) = θ conditioned
on having a particular initial bias. Hence, by definition of
conditional probability, the numerical solutions are produced
from quadrature on ratios of Eq. (A4) with FE = F1 in the
numerator and FE = F in the denominator with Xn(1) = y. The
inset of Fig. 2(c) is one minus the outset. In Fig. 2(d) we
illustrate Eq. (A3) where FE = F and Sn( j) = s. In Fig. 3(b)
we illustrate the probability that the last decider chooses the
decision at X (TN ) = θ conditioned on having a particular
initial bias. Similarly to Fig. 2(b), the numerical solutions
are produced from quadrature on ratios of Eq. (A5) with
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FE = F1 in the numerator and FE = F in the denominator with
Xn(N )(0) = y.

APPENDIX J: AGENT-BASED STOCHASTIC
SIMULATIONS

1. One-dimensional drift diffusion equation

To test the analytical solutions, we solved Eq. (1) in the
main text using the Euler-Maruyama method, which describes
the evidence accumulation process preceding binary deci-
sions. In this approximation scheme, the true solution to the
stochastic differential equation is approximated by a Markov
chain Y constructed by setting Y0 = X (0) and updating Y
according to the iterative scheme

Yn+1 = Yn + μ�t +
√

2D�W,

where Yn ≡ Y (n�t ) is the value of the Markov chain after the
nth update, and the random variables �W are independent and
identically distributed Gaussian random variables with mean
0 and variance �t . The equations were integrated until |Yn|
exceeded θ .

The temporal discretization, �t, is user defined. As N
grows, the time to first decision decays slowly. Thus, for large
N , �t must be taken to be sufficiently small for accurate
representation of decision dynamics. For simulations here,
we chose �t = 10−3 for 1 � N � 1000. For N > 1000, we
chose �t = N−1.

2. Two-dimensional drift diffusion equation

Decisions between three choices require a drift-diffusion
model evolving on a planar domain [27]. Updating the
discrete-time approximation of Eq. (F1) for each observer
(dropping the i subscript) using Euler-Maruyama provides the
following iterative scheme

Y 1
n+1 = Y 1

n + μ1�t +
√

2D�W 1,

Y 2
n+1 = Y 2

n + μ2�t +
√

2D�W 2,

where Y j
n = Y j (n�t ) is the value of the belief after the nth

update, the random variables �W j are Gaussian random vari-
ables with mean 0 and variance �t . Equations are integrated
until the vector (Y 1

n ,Y 2
n )T departs the triangular domain

{(Y 1,Y 2)|Y 2 < h & Y 2 >

− 2h(3Y 1 + 1) & Y 2 > 2h(3Y 1 − 1)},
where h = (2

√
3)−1. Choices of each agent are determined by

whether the agent crosses the Y 2 = h or Y 2 = −2h(3Y 1 + 1)
or Y 2 = 2h(3Y 1 − 1) boundary. For simulations again we use
�t = 10−3 for 1 � N � 1000 and �t = N−1 for N > 1000.

For the 2D case in an equilateral triangle, the threshold θ

is taken to be equal to the length of the apothem—defined as
a line from the center of a regular polygon at right angles to
any of its sides. Hence, an unbiased agent begins at the center
of the equilateral triangle. We prescribe initial data for biased
agents to be anywhere along an apothem except the center of
the triangle.
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