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a b s t r a c t

We describe a spatial Moran model that captures mechanical interactions and directional growth in
spatially extended populations. The model is analytically tractable and completely solvable under a
mean-field approximation and can elucidate the mechanisms that drive the formation of population-
level patterns. As an example we model a population of E. coli growing in a rectangular microfluidic
trap. We show that spatial patterns can arise as a result of a tug-of-war between boundary effects
and growth rate modulations due to cell–cell interactions: Cells align parallel to the long side of the
trap when boundary effects dominate. However, when cell–cell interactions exceed a critical value,
cells align orthogonally to the trap’s long side. This modeling approach and analysis can be extended
to directionally-growing cells in a variety of domains to provide insight into how local and global
interactions shape collective behavior.

© 2019 Elsevier B.V. All rights reserved.

Patterns emerge in collectives of interacting biological agents
even in the absence of leaders or global signals. Collective mo-
tions of birds and fish arise from simple interactions between
neighbors [1,2], and gliding M. xanthus form coherently-moving
clusters via steric interference [3]. Physical and chemical in-
teractions can also drive biological pattern formation including
mammalian coat markings [4–6], embryonic development [7,8],
and patterns in growing microbial colonies [9,10]. Yet how lo-
cal interactions drive collective, emergent behavior is not fully
understood.

Recent experiments and agent-based simulations suggest that
environmental geometry and physical interactions shape the
global structures observed in microbial collectives [11–14]. In
such populations cell growth is frequently directional: For in-
stance, capsule-shaped bacteria grow along the major axis of
their bodies, preferring directions with minimal physical resis-
tance [10,11,15].

We introduce an analytically-tractable, spatial Moran model
(SMM) that incorporates directional growth modulated by cell–
cell interactions as a tool to understand the mechanisms that
shape these spatial patterns. To illustrate this modeling approach,
we describe a population of rod-shaped bacteria growing in an
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extended microfluidic trap [11,12,16]. In this model a cell’s ori-
entation determines the directions in which it divides, while its
location determines its growth rate. As physical growth requires
the displacement of fewer cells toward the nearer boundary, we
assume the rate of growth is higher in this direction.

In this model a transition occurs at a critical value of cell–
cell interactions: When cells do not strongly impact each other’s
growth, the collective aligns parallel to the long side of the trap
(see Fig. 2b). However, if cell–cell interactions become sufficiently
strong, the collective aligns orthogonally to the trap’s long side
(see Fig. 2a). The latter arrangement is observed experimentally,
and our model suggests that modulations of growth-rate due to
cell–cell interactions can drive the emergence of ordered states
in spatially-extended populations [17].

SMMs have previously been used to model tumor initiation
and growth and calculate fixation probabilities and first passage
times for mutations [18–21]. However, earlier models did not
include spatially-dependent, directional growth rates. Further-
more, while some analysis is possible, these systems are often
intractable. We thus provide a flexible and tractable modeling ap-
proach that can be used to understand how the environment and
cell–cell interactions shape the patterns observed in populations
of cells.

1. Spatial Moran model (SMM)

We use the particular example of rod-shaped bacteria growing
in a microfluidic trap to illustrate the general modeling approach
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Fig. 1. In the SMM cell growth is directional and location-dependent: The vertical cell outlined in red can grow only upward or downward at a location-dependent
rate. The red arrow indicates growth direction, so the cell above will be replaced by a descendant of the outlined cell. The population consists of two biochemically
noninteracting strains for visualization: The initial color assignment is random, and daughter cells share the color of their mothers . (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 2. Cells growing on a lattice according to a SMM. (a) Snapshots of the transient states and the all-vertical equilibrium for κ > κ∗ . On the left, we show growth
rates of vertically-oriented cells toward the upper and lower boundaries; (b) Same as (a) but for κ < κ∗ . See SI for movies.

and analysis. We model the rectangular microfluidic trap as an
M × N lattice filled by vertically- or horizontally-oriented cells
(see Fig. 1). For simplicity, we assume that initially the lattice
is full, and cell orientation is random (starting with partly filled
lattices results in the same steady-states; See SI). Cells grow at
location-dependent rates, and upon division, a cell’s offspring
replaces one of its neighbors. We denote by v±

κ (i) the growth
rate of a vertical cell in the ith row toward the top (+) or bottom
(–) boundary, and h±

κ (j) the growth rate of a horizontal cell in
the jth column toward the right (+) or left (–) boundary (see
Fig. 1). The growth rate of a vertical (horizontal) cell depends only
on the row (column) in which it resides since we assume that
growth rate is modulated by the population that lies between a
cell and the closest boundary in the direction of growth. Growth
rates are determined by a one-parameter function family, with
the parameter κ ∈ [0, ∞) characterizing the population’s impact
on growth. This family can be general, but we assume that growth
rates are positive and satisfy three conditions: (1) There exists a
λ ∈ (0, ∞) such that v±

κ (i), h±
κ (j) → λ as κ → 0 for all i, j; (2)

Maximal growth rates occur at the boundaries, v+
κ (M) = v−

κ (1) =

h+
κ (N) = h−

κ (1) = λ; (3) v±
κ (i), h±

κ (j) decrease monotonically with
distance from the boundary that maximizes their value. Condition
(1) states that cells grow uniformly at rate λ in the absence
of interactions (κ = 0). Conditions (2) and (3) reflect a cell’s
tendency to grow toward the nearest boundary and growth rate
dampening from cells obstructing growth in a certain direction
(see Fig. 1). Unless otherwise noted, we used [22]

v+

κ (i) = λe(−κ(M−i)) v−

κ (i) = λe(−κ(i−1)) (1a)

h+

κ (j) = λe(−κ(N−j)) h−

κ (j) = λe(−κ(j−1)). (1b)

Cells grow by displacing their neighbors: In a small interval,
∆t , a vertical (horizontal) cell at the ijth site replaces a neighbor
at (i ± 1)j (respectively i(j ± 1)) with a copy of itself with prob-
ability v±

κ (i)∆t (respectively h±
κ (j)∆t). Divisions are independent

across the population, and thus inter-event times are exponen-
tially distributed. Only the division of an adjacent cell with the

opposite orientation can alter the orientation at the ijth site.
Boundaries are absorbing: Divisions at the boundary producing
descendants outside the trap result in no changes.

We note that the assumption that cell division results in re-
placing a neighbor with a copy of a dividing cell is not realistic. In
a
microfluidic trap, cell growth and division can result in the
displacement of multiple cells in the direction of growth. We can
extend the model so that cell division causes displacement of
the entire stack of cells between a dividing cell and the bound-
ary. While such a model is more realistic, it is not analytically
tractable as a birth at one location can affect distant parts of
the population. However, a model that includes these long-range
interactions displays similar behavior to our SMM (see SI [23] Fig.
S6). We therefore focus on the latter because of its simplicity and
tractability.

2. Results

To understand the impact of trap geometry on collective bac-
terial cell alignment, we simulated the SMM using the Gillespie
algorithm [24] on lattices with different aspect ratios, Γ ≡ N/M ,
and different interaction parameters, κ . While the model has
three parameters, κ,M,N , we focus on the parameters κ and Γ ,
the latter of which defines the geometry of microfluidic traps. For
κ sufficiently large, all initial conditions converge to the equilib-
rium where cells are orthogonal to the long side of the trap (see
Fig. S2; for Γ > 1, all cells vertical, for Γ < 1, all cells horizontal).
When Γ = 1, the system reaches a quasi-equilibrium with cells
orthogonal to the nearest boundary (see Fig. 3). This suggests that
Γ acts as a parameter for a transcritical-like bifurcation at Γ = 1
where the horizontal and vertical equilibria exchange stability.
We make this precise in the next section.

Interestingly, when κ = 0, cells orient parallel to the long
side of the trap (see Fig. 2b): When Γ > 1 (Γ < 1), the
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horizontal (vertical) equilibrium is stable. When Γ = 1, sym-
metry again results in a saddle-like quasi-equilibrium, with cells
parallel to the nearest boundary. Therefore, when cells divide
at location-independent rates, (κ = 0) they approach an equi-
librium opposite to that when growth is location-dependent (κ
sufficiently large). We observed the second state experimentally,
suggesting that such cell–cell interactions influence global struc-
ture. The model also suggests that a phase transition occurs at a
critical value, κ∗.

This exchange of stability between equilibria at κ∗ results
from an interplay between boundary effects and growth rate
variations. When κ = 0, all cells divide at equal rates, except
for those orthogonal to a boundary. These are as likely to have
a descendant within the trap as outside. However, more cells
are likely to be orthogonal to the long boundary and to have a
descendant outside the trap, than those orthogonal to the short
boundary. Therefore, cells parallel to the long boundary have
a higher effective growth rate and eventually fill the trap (see
Fig. 2b). Conversely, when κ > κ∗, cells parallel to the longer
side of the trap will have more cells obstructing their growth
than cells parallel to the short side. If κ is sufficiently large, the
average growth rate of cells perpendicular to the long boundary
will dominate, and these cells will fill the trap (see Fig. 2a). Even
when κ > κ∗, variations in growth rates across the lattice can be
small: In a 20 × 10 lattice, κ∗

∼ 10−2 (see below) and cell growth
is reduced by half at ≈ 70 cell lengths.

Cell–cell interaction kernels satisfying conditions (1)–(3) will
generally lead to the same qualitative results, and we obtain the
critical values κ∗ analytically for a range of different functions
below. As expected, κ∗

→ 0 as lattice size grows, and near critical
values in larger traps growth rates have smaller spatial variations
than in smaller traps.

3. Master equation model

To understand the dynamics of the SMM we develop a master
equation (ME) describing the evolution of occupation probabili-
ties at different lattice sites. Denote by nij ∈ {0, 1} the state of
the ijth site at time t , so that nij = 1 ( nij = 0) corresponds to
a site occupied by a vertical (horizontal) cell. The probabilities
pij(t) = P(nij = 1 at time t) evolve according to the ME [25,26],

dpij
dt

= v+

κ (i − 1)p(n(i−1)j = 1, nij = 0, t)

+ v−

κ (i + 1)p(n(i+1)j = 1, nij = 0, t)
− h+

κ (j − 1)p(ni(j−1) = 0, nij = 1, t)
− h−

κ (j + 1)p(ni(j+1) = 0, nij = 1, t),

(2)

where p(nij, nkl, t) are joint occupation probabilities at time t .
The first two terms in Eq. (2) correspond to horizontal-to-vertical
cell transitions through displacement by a descendant from a
cell either above or below. The second two terms describe the
opposite transition. Sites outside the lattice are unoccupied, so
boundary conditions are determined by e.g. p(ni(N+1) = 0, nij =

1, t) = p(n0j = 1, nij = 0, t) = 0.
Eq. (2) is related to the Ising model as both describe the evolu-

tion of alignment probabilities on a lattice. However, the location-
dependent growth rates lead to different interactions. While in
our model no external field influences cell alignment [26], di-
rectional flow of media through the trap could have a similar
effect.

The evolution of pij(t) depends on the joint probabilities p(nij,

nkl, t). The dynamics of the latter depend on the joint occupation
probabilities at three or more sites leading to an infinite hierarchy
of equations. Following a common approach [25,26], we assume
that the occupation states at neighboring sites are independent,

p(nij = 1, nkl = 1, t) = pij(t)pkl(t), yielding a closed system of
ODEs (see Eq. (S2)). The evolution of Eq. (2) and its approximation
are both consistent with direct SMM simulations: When κ > κ∗

we observe an all-vertical state (pij ≈ 1) when Γ > 1, and an
all-horizontal state (pij(t) ≈ 0) when Γ < 1. When Γ = 1
orientations tend to be perpendicular to the closer boundary, and
pij(t) ≈ 0.5 along the diagonals of the square lattice. In Fig. 3c
we show the steady-state distribution of cell orientations when
κ > κ∗ and κ < κ∗ for Γ = 1 (see Fig. S2 for equilibria at
different parameter values).

As in the SMM, equilibrium stability depends on Γ and κ .
Fig. 3a shows the largest real parts of the eigenvalues of the
Jacobian of the closed ME at the all-vertical and all-horizontal
equilibrium (pij = 1 and pij = 0 at all locations, respectively) for
fixed κ > κ∗ as a function of Γ . For Γ > 1, the all-vertical state
is stable. As Γ crosses unity from above, the largest eigenvalue
becomes positive, and the all-vertical state becomes unstable. The
all-horizontal state exhibits the opposite behavior. For smaller
lattices a saddle-like state (see Fig. 3c and Fig. S2) is stable over a
range of Γ (inset in Fig. 3a). Although discrete, Γ thus behaves as
a parameter for a transcritical bifurcation in which the all-vertical
and all-horizontal states exchange stability at a saddle state.

Consistent with the SMM, when κ < κ∗, the equilibria in the
regimes Γ < 1 and Γ > 1 are opposite those when κ > κ∗ (see
Fig. S2). Hence, κ acts as a second bifurcation parameter for the
ME with the all-horizontal and all-vertical equilibria exchanging
stability at critical value κ∗: When Γ > 1, and κ < κ∗ the
stable equilibrium is predominantly horizontal. As κ grows, this
equilibrium transitions to being predominantly vertical, and for
some κ > κ∗, it destabilizes and the all-vertical equilibrium
becomes stable (see Figs. 3b and S2). For brevity, we refer to
equilibria only as all-horizontal or all-vertical.

The transition in stability near κ = κ∗ and Γ = 1 is driven
by the same mechanisms as in the SMM: At Γ = 1 the aspect
ratio of the trap changes, while for κ > κ∗ location-dependent
dampening of growth overcomes the loss of cells across the
longer trap boundary.

Interestingly, solutions exhibit boundary layers for κ < κ∗

(see Fig. S2). This suggests a breakdown in the closed ME near
the trap’s edges. Indeed, simulations of the SMM reveal high
correlations between adjacent states near the short trap edge
when κ < κ∗. These correlations violate the assumptions used
to obtain the ME, but decay rapidly away from the boundaries
(see Fig. S3).

4. Mean field reduction

We next average occupation states over the lattice to derive a
simple mean field (MF) model that captures the behavior of the
SMM, and allows us to compute κ∗ analytically. Let

v̄κ ≡
1
M

M∑
i=1

v+

κ (i), h̄κ ≡
1
N

N∑
j=1

h+

κ (j), n ≡
1

MN

∑
i,j

pij,

so that n(t) is the fraction of vertical cells at time t , and v̄κ , h̄κ are
the average growth rates in the vertical, and horizontal directions,
respectively. By symmetry, v−

κ , and h−
κ also average to v̄κ , and h̄κ .

Averaging the closed ME over all i, j shows that n obeys a logistic
equation,
dn
dt

= 2
(
v̄κ

(
1 −

1
M

)
− h̄κ

(
1 −

1
N

))
  

µ(κ,M,N)

n(1 − n), (3)

and n(t) = exp(µ(κ,M,N)t)/(1 + exp(µ(κ,M,N)t)). This agrees
with the averaged solutions to Eq. (2) and SMM simulations
averaged over realizations (see Fig. 4a).
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Fig. 3. (a) Largest eigenvalue at all-vertical and all-horizontal equilibria (system sizes are M = 10, dashed, M = 100, solid). The two states lose stability at different
points when M = 10, so that for a range of Γ neither is stable. When M = 100 the equilibria lose stability nearly simultaneously at Γ = 1. Here, κ = 0.1. (b) The
fraction of vertical cells at equilibrium exhibits a sharp transition near κ∗ for fixed Γ > 1 (Eq. (3), blue, and closed ME, Eq. (2), green). A secondary bifurcation in the
all-vertical state occurs at κ > κ∗ (solid to dashed green line transition) (c) Steady states of the closed ME when Γ = 1 for κ > κ∗ and κ < κ∗ . (For interpretation
of the references to color in this figure legend, the reader is referred to the web version of this article.)

The effective growth rate of the vertical cell fraction is thus
µ(κ,M,N) = 2(v̄κ (1 − 1/M) − h̄κ (1 − 1/N)). When κ = 0,
µ(0,M,N) = 2λ(1/N − 1/M), and the effective growth rate
is completely determined by boundary lengths. Cell–cell inter-
actions modulate the effective growth rate as κ is increased.
However, the system always has two equilibria corresponding to
an all-vertical (n = 1) and all-horizontal (n = 0) orientation
which exchange stability at N = M(Γ = 1).

The two equilibria also exchange stability at a critical level
of cell–cell interactions, κ∗. For fixed M,N , this transition point
satisfies µ(κ∗,M,N) = 0. For 0 < κ < κ∗ and N < M (N > M)
the state n = 1 (n = 0) is stable. When κ > κ∗ the difference
in average growth rates, v̄κ , h̄κ , dominates boundary effects and
the system reaches the opposite equilibrium. Unlike the ME, the
MF model predicts a sharp transition between stable equilibria
(see Fig. 3b) and no intermediate stable states. Although precise
information about the underlying complex bifurcation structure
is lost, the predicted equilibria and their stability agree with
simulations of the SMM.

While a general closed form solution for κ∗ is not available,
we can obtain approximate solutions for large domains and show
how κ∗ scales with trap size for different interaction kernels. To
reduce parameter number, we fix M and N and use a single pa-
rameter, s, to determine lattice dimensions as sM×sN . Expanding
µ(κ, sM, sN) to second order in κ , and solving for κ∗ shows that
for exponential kernels,

κ∗
∼ 2/(MNs2) ∼ s−2. (4)

For interaction kernels that decay with the inverse power of
distance from the boundary, v+

κ (i) = λ/(1+κ(M−i)α), α ∈ (0, ∞),

κ∗
=

(α + 1)(N − M)
sα+1MN(Nα − Mα)

∼ s−(α+1)

for large s (see SI).
These asymptotic results agree with simulations (see Fig. 4b):

κ∗
→ 0 as s → ∞ at the predicted asymptotic rate. Interestingly,

the exponential interaction kernel does not produce the strongest
decay of κ∗ with s. The aspect ratio of the trap, Γ , shifts the
transition points, but does not change the scaling (see inset
of Fig. 4b). In large traps even weak cell–cell interactions can
cumulatively dominate boundary effects, and lead to steady-state
cell alignments orthogonal to the trap’s long side.

5. Discussion

We presented a general approach to modeling pattern forma-
tion in collectives of directionally-growing, mechanically inter-
acting cells. We illustrated this approach using the example of a
population of E. coli in an extended microfluidic trap. In this case
cell loss across the trap’s boundary drives growth parallel to the
long side of the rectangular domain, while cell–cell interactions
drive orthogonal growth. We derived a logistic equation that
approximates the full stochastic model, allowing us to analyze the
phase transitions in detail.

Experiments with E. coli populations growing in open rect-
angular microfluidic traps show bands of a single strain of bac-
teria becoming orthogonal to the long edge (see Fig. 5). Our
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Fig. 4. (a) Comparison of MF solutions with averages over realizations of the SMM (N = 20, M = 10). Also shown (dashed line) are averages over realizations of
the long-range interaction model (see SI) to show that time scales between the models are comparable. (b) κ∗ as a function of s for different interaction kernels.
Dots represent κ∗ values from Eq. (3). X’s were obtained numerically from simulations of the SMM using bisection. Dashed lines were obtained using Eq. (4). Inset:
κ∗ as a function of s for different aspect ratios, Γ .

Fig. 5. A monolayer of E. Coli in an open microfluidic trap with cells aligned orthogonally to the trap’s long side. Colors represent distinct strains. Image is previously
unpublished and taken from experiment run by RNA. Further experimental results can be seen in [11,12,16,27].

model suggests that cell growth rate modulation due to cell–
cell interactions may drive this emergent order. Previous model-
ing approaches relying on more complex models have proposed
complementary mechanisms [11,12,16,27]).

Our model can be easily extended: We can include additional
stochastic rules for more complex 2D, and even 3D, geometries.
We can allow for stochastic switching of orientation, and allow
for more than two orientations. Specifically, the phase transi-
tion we observed may depend on the discrete nature of the set
of possible orientations, and may disappear if we allow for a
continuum of orientations, as in the XY model [28,29]. Further-
more, we can model multiple bacterial strains by increasing the
number of occupational states at a lattice site. Including dynami-
cal equations that describe cellular communication via quorum
sensing molecules would then allow us to examine the inter-
play between cell distribution, communication, and growth that
determine bacterial collective dynamics [30–33]. The proposed
modeling approach may thus be applicable in a variety of con-
texts, including bacteria (B. subtilis, A. tumefaciens), fungi (fission
yeast, A. nidulens), and plants (stem and root axis epidermal cells
in A. thaliana) [34].
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