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Diffusive transport in the presence of stochastically gated absorption
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We analyze a population of Brownian particles moving in a spatially uniform environment with stochastically
gated absorption. The state of the environment at time t is represented by a discrete stochastic variable k(t) ∈ {0,1}
such that the rate of absorption is γ [1 − k(t)], with γ a positive constant. The variable k(t) evolves according to
a two-state Markov chain. We focus on how stochastic gating affects the attenuation of particle absorption with
distance from a localized source in a one-dimensional domain. In the static case (no gating), the steady-state
attenuation is given by an exponential with length constant

√
D/γ , where D is the diffusivity. We show that

gating leads to slower, nonexponential attenuation. We also explore statistical correlations between particles due
to the fact that they all diffuse in the same switching environment. Such correlations can be determined in terms
of moments of the solution to a corresponding stochastic Fokker-Planck equation.

DOI: 10.1103/PhysRevE.96.022102

I. INTRODUCTION

A fundamental property of a one-dimensional diffusion-
absorption process is that it generates an exponentially
decaying steady-state solution in response to a localized source
of particles. “Absorption” could be due to the presence of
spatially distributed traps within or on the boundary of the
medium [1–8] or due to degradation and/or inactivation of
the diffusing particles as in the formation of protein gradients
at the intracellular [9–12] and multicellular levels [13–17].
In the latter case, the presence of attenuation in the particle
concentration plays a crucial role in cell signaling either
coupling cell growth to the cell cycle or regulating gene
activity according to spatial location during embryogenesis.
On the other hand, attenuation can be a problem for diffusion-
based forms of intracellular transport that distribute newly
synthesized proteins to different regions of a cell. This issue is
particularly acute for neurons, with their extensively branched
dendrites that receive information from other neurons and a
single long axon that delivers information over long distances
to other neurons or muscle cells [18–21]. The presence
of active motor-driven transport does not necessarily solve
this problem, since the stochastic nature of molecular motor
trafficking results in an effective advection-diffusion equation,
which still results in attenuated steady-state concentrations of
particles [22].

Recently, we have shown how attenuation of the steady-
state concentration can be mitigated by taking the absorption of
particles to be reversible [22–25]. Although our mathematical
analysis was motivated by experimental studies of intracellular
transport in neurons [26,27], it reflects a general feature of
diffusion-absorption processes: If absorption of particles is
reversible, then the particles absorbed close to the source are
free to be re-released into the diffusing pool of particles for
absorption at more distal regions. In this paper, we investigate
another potential mechanism for mitigating attenuation, which
is based on stochastic gating. The latter has been studied
extensively within the context of diffusion-trapping problems
[28–33] but, as far as we are aware, has not been considered
within the context of the spatial distribution of diffusing
molecules within cells. One of the important distinctions that
has to be made in the case of stochastically gated diffusion
is whether each diffusing particle is independently gated

or the medium itself is gated. In the latter case, statistical
correlations arise between the particles even when they are
noninteracting, due to the fact that they move in the same
fluctuating environment. We have explored this issue in a series
of papers concerning diffusion in domains with stochastically
gated exterior boundaries or interior barriers (gap junctions)
[34–39]. In this paper we extend our analysis to the case of a
population of Brownian particles moving in an environment
with stochastically gated absorption. That is, the state of the
environment at time t is represented by a discrete stochastic
variable k(t) ∈ {0,1} such that the rate of absorption is
γ [1 − k(t)], with γ a positive constant. The variable k(t)
evolves according to a two-state Markov chain. For simplicity,
we typically assume that the absorption process is spatially
uniform, though we also consider an example of spatially
heterogeneous absorption in Sec. V.

The structure of the paper is as follows. In Sec. II, we
consider a single Brownian particle diffusing along the semi-
infinite line x ∈ [0,∞), with a reflecting boundary at x = 0.
Assuming that the particle starts at x = 0, we determine the
steady-state absorption density q(x) as a function of position
x. In the case of a static absorption rate γ , we find that q(x)
decays exponentially with length constant

√
D/γ , where D

is the diffusivity. On the other hand, if the absorption rate is
stochastically gated, then the attenuation of q(x) as a function
of x is nonexponential and significantly slower. In Sec. III we
turn to a large population of noninteracting Brownian particles
diffusing in the same randomly switching environment. Given
a particular realization of the environment, the population
density evolves according to a Fokker-Planck (FP) equation
with a time-dependent absorption rate. It follows that different
realizations of the environment generate an ensemble of FP
equations. We show how moments of the corresponding
population densities, obtained by taking expectations with
respect to realizations of the environment, evolve according
to a hierarchy of differential Chapman-Kolmogorov (CK)
equations. Analyzing the second-order moment equations
allows us to determine the variance in the stochastic absorption
density. In Sec. IV we develop an alternative approach to
studying stochastically gated absorption by decomposing
the solution into the product of a deterministic factor and
a nonspatial stochastic factor. The latter is then analyzed
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using a method originally due to Kubo [40]. Finally, in
Sec. V we consider an example of spatially heterogeneous,
gated absorption involving N spatially localized traps. For
simplicity, we assume that the stochastic gating of the traps
is synchronized so that there is still a single gating variable
k(t) ∈ {0,1}. If each trap had its own independent gate with
discrete state kn(t) ∈ {0,1}, then switching would be described
by a Markov chain with 2N states. Synchronized switching
might occur if there were some form of coupling between the
traps or some external drive that switches the traps.

II. SINGLE BROWNIAN PARTICLE WITH
STOCHASTICALLY GATED ABSORPTION

A. Static absorption

Consider a single Brownian particle diffusing along the
semi-infinite line x ∈ [0,∞). Suppose that at any point x the
particle can be absorbed at a rate γ . (Such absorption could
be due to a set of closely spaced discrete traps, as previously
investigated within the context of diffusive transport in spiny
dendrites of neurons [20].) Let p(x,t) be the probability
density for the particle to be at x at time t and not yet absorbed.
Then

∂p

∂t
= D

∂2p

∂x2
− γp. (2.1)

We assume that the particle is initially injected at the end x = 0
and this boundary is reflecting. (Throughout this paper we fix
the units of space and time by setting D = 1 and γ = 0.1.)
Thus,

∂p(x,t)

∂x

∣∣∣∣
x=0

= 0; p(x,0) = δ(x). (2.2)

Clearly in the large-time limit we have

lim
t→∞ p(x,t) = 0

for all x ∈ R+ so that there does not exist a nontrivial
steady-state solution. One way to obtain a nontrivial steady-
state solution is to consider a population of independent
Brownian particles injected at the end x = 0 according to
a constant flux J0 and determine the resulting steady-state
particle concentration u(x). The latter takes the form of a
decaying exponential

u(x) = J0√
γD

e−√
γ /Dx.

However, it is also possible to extract the exponential nature of
the transport process at the level of a single Brownian particle.

The basic idea is to keep track of the probability flux into
targets by introducing the density q(x,t) such that

∂q(x,t)

∂t
= γp(x,t); q(x,0) = 0. (2.3)

Integrating with respect to times gives

q(x,t) = γ

∫ t

0
p(x,τ )dτ. (2.4)

Although p(x,t) → 0 as t → ∞, one finds that

q(x,t) → q(x) = γ

∫ ∞

0
p(x,τ )dτ as t → ∞. (2.5)

Moreover, integrating Eq. (2.1) with respect to x and t and
using Eqs. (2.2) establishes that

∫ ∞
0 q(x)dx = 1. In other

words, q(x) is the probability density that the particle is
absorbed at x. It is straightforward to determine q(x) using
Laplace transforms. Setting

p̃(x,s) =
∫ ∞

0
e−stp(x,t)dt, (2.6)

we see that q(x) = γ lims→0 p̃(x,s). Laplace transforming
Eq. (2.1) and using the initial condition in (2.2) implies that
for each s

D
d2p̃

dx2
− (γ + s)p̃ = −δ(x), x ∈ (0,∞);

dp̃

dx

∣∣∣∣
x=0

= 0.

(2.7)

It follows that p̃(x,s) is determined by the Neumann Green’s
function on the semi-infinite line:

p̃(x,s) = 1√
(γ + s)D

e−√
(γ+s)/Dx. (2.8)

We thus deduce that the probability density for absorption is
an exponentially decaying function of x,

q(x) =
√

γ

D
e−√

γ /Dx. (2.9)

Note that the expression for q(x) can also be obtained directly
from Eq. (2.12) by solving Eqs. (2.1) and (2.2) in the time
domain. One finds that the solution is given by [p(x,t) =

1√
πDt

e−x2/4Dt−γ t ]. Substituting into Eq. (2.12), taking the limit
t → ∞ and evaluating the resulting integral recovers Eq. (2.9).

B. Gated absorption

Following previous work on diffusion in randomly switch-
ing environments [24,37], there are two alternative ways to
introduce gated absorption; see Fig. 1. First, the Brownian
particle can switch between two conformational states labeled
k = 0,1, and is absorbed (degraded) only if it is in state k = 0.
Alternatively, there exists a physical gate that can switch be-
tween two discrete states k = 0,1, so that the Brownian particle
is absorbed only if the gate is in state k = 0. In the case of a
single Brownian particle, these two scenarios are statistically
equivalent. However, this equivalence breaks down in the case
of a population of noninteracting Brownian particles moving
in the same switching environment (see Sec. III).

We will assume that the discrete state k(t) ∈ {0,1} evolves
according to a two-state Markov chain with constant transition
rates α,β. Let X(t) denote the current position of the particle
given that it has not yet been absorbed, and consider the
Markov process (X(t),k(t)) with probability density

pk(x,t)dx = P[x � X(t) � x + dx,k(t)

= k|X(0) = 0,k(0) = 0]. (2.10)
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FIG. 1. Schematic diagram of a Brownian particle diffusing in
a one-dimensional domain with gated absorption. Absorption can
occur only when both the particle and the gate have the same color.
(a) The particle switches between two conformational states, k = 0,1,
and can be absorbed only in the state k = 0. The rate of absorption
is γ , and the switching rates between the two conformational states
are given by α,β. (b) Same as (a) except that now the gate, rather
than the particle, switches state. (Note that in the figures diffusion
is one-dimensional; the vertical coordinate is simply introduced to
illustrate absorption.)

The probability densities pk(x,t), k = 0,1, evolve according
to the differential CK equation

∂p0

∂t
= D

∂2p0

∂x2
− γp0 − βp0 + αp1, (2.11a)

∂p1

∂t
= D

∂2p1

∂x2
+ βp0 − αp1. (2.11b)

These are supplemented by the initial conditions

pk(x,0) = ρkδ(x), (2.11c)

with ρ0 + ρ1 = 1, and boundary conditions

∂pk(x,t)

∂x

∣∣∣∣
x=0

= 0, k = 0,1. (2.11d)

Note that we could also take the diffusion coefficient to differ
in the two states, but for simplicity we take them to be the
same. Finally, we introduce the absorption density

q(x,t) = γ

∫ t

0
p0(x,τ )dτ. (2.12)

Again we use Laplace transforms to determine q(x).
Laplace transforming Eqs. (2.11a) and (2.11b) and using the
initial conditions yields

D
d2p̃0

dx2
− (γ + β + s)p̃0 + αp̃1 = −ρ0δ(x), (2.13a)

D
d2p̃1

dx2
− (α + s)p̃1 + βp̃0 = −ρ1δ(x), (2.13b)

for x ∈ (0,∞). It is useful to rewrite these equations in matrix
form by setting p̃ = (p̃0,p̃1)�, with

D
d2p̃
dx2

− [A(γ ) + sI]̃p = −δ(x)e0, x ∈ (0,∞),

where

A(γ ) =
(

γ + β −α

−β α

)
, e0 =

(
ρ0

ρ1

)
. (2.14)

(We keep track of the dependence on γ because in Sec. IV
we encounter similar equations except that γ → 2γ .) Let us
now set s = 0. Let λ±(γ ) denote the eigenvalues of A(γ ) with
corresponding left and right eigenvectors denoted by v̂±(γ )
and v±(γ ), respectively, with v̂± · v∓ = 0. Note in particular
that

λ±(γ ) = 1
2 [α + β + γ ±

√
(α + β + γ )2 − 4αγ ], (2.15)

which are real, positive, and distinct. It follows that A(γ ) is
diagonalizable. Introducing the expansions

p̃(x,0) = c+(x)v+(γ ) + c−(x)v−(γ ), (2.16)

we obtain the pair of uncoupled equations

D
d2c+
dx2

− λ+(γ )c+(x) = −�+(γ )δ(x), (2.17a)

D
d2c−
dx2

− λ−(γ )c−(x) = −�−(γ )δ(x), (2.17b)

where

�±(γ ) ≡ v̂±(γ ) · e0

v̂±(γ ) · v±(γ )
= [α − λ±(γ )]ρ0 + αρ1

[α − λ±(γ )]2 + αβ
. (2.18)

Solving these equations along lines identical to those of the
nonswitching case shows that

c±(x) = �±(λ)√
Dλ±(λ)

e−√
λ±(λ)/Dx, (2.19)

and

q(x) ≡ γ p̃0(x,0) = γ

{
[α − λ+(γ )]

�+(γ )√
Dλ+(γ )

e−√
λ+(γ )/Dx

+ [α−λ−(γ )]
�−(γ )√
Dλ−(γ )

e−√
λ−(γ )/Dx

}
.

(2.20)
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FIG. 2. Absorption density q(x) as a function of absorption
position x. The solid curves are determined from Eq. (2.20) and
the marks are the results from Monte Carlo simulations. We take
β = 1, γ = 0.1, D = 1, and α varies.
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In particular, if α + β 	 γ , then λ+ 	 λ− and λ−(γ ) ≈
[α/(α + β)]γ . Hence, in the fast switching regime

q(x) ≈
√

γeff

D
e−√

γeff/Dx, (2.21)

where

γeff = α

α + β
γ (2.22)

is an effective absorption rate. This is equal to the original
absorption rate multiplied by the mean proportion of time
the Brownian particle or gate is in the state k = 0. Plots of
the spatial decay of q(x) for different values of α and other
parameters fixed are shown in Fig. 2. It can be seen that large α

increases the decay rate, whereas small α reduces the effects of
absorption at sites close to the source at x = 0 so that resources
can reach regions further into the domain.

III. POPULATION OF BROWNIAN PARTICLES
DIFFUSING IN A STOCHASTICALLY GATED ABSORBING

ENVIRONMENT

So far we have focused on a single Brownian particle
diffusing in a stochastically gated absorbing environment.
We now turn to the case of a population of noninteracting
Brownian particles diffusing in such an environment. In
contrast to the single-particle case, the two scenarios shown
in Fig. 1 are no longer equivalent. That is, if each particle
randomly switches conformational state, then there are no
statistical correlations between the particles, and one can
simply carry over the analysis of Sec. II. On the other hand, if
the gate itself randomly switches state, then correlations arise
from the fact that all the particles diffuse in the same switching
environment. We will consider the latter in this section.

Consider an ensemble of identical, independent Brownian
particles labeled by i = 1, . . . ,N with position variables Xi(t),
Xi(0) = 0, all being subject to the same randomly switching
environment; see Fig. 3. Consider a single realization of
the stochastic switching process, σ (t) = {k(τ ),0 � τ � t}.
Take the thermodynamic limit N → ∞, and let P (x,t)
denote the probability density of particles in state x at
time t given the particular realization σ (t). The population
density evolves according to the stochastic Fokker-Planck (FP)
equation

∂P (x,t)

∂t
= D

∂2P (x,t)

∂x2
− γ [1 − k(t)]P (x,t), x > 0,

(3.1)

with P (x,0) = δ(x) and a reflecting boundary at x = 0. We
also introduce the corresponding absorption density Q(x,t),

α

β

x

γ

x

FIG. 3. Population of Brownian particles diffusing in the same
environment with stochastically gated absorption.

with

∂Q(x,t)

∂t
= γ [1 − k(t)]P (x,t) (3.2)

and Q(x,0) = 0. Noting that the densities P (x,t) and Q(x,t)
are random fields with respect to different realizations of the
dynamic gate, we will average with respect to these realizations
and analyze the large-time limit.

We will proceed by extending recent work on diffusion
processes with randomly switching boundary conditions
[34,36,37,39]. In these studies a method was developed for
deriving a closed set of equations for equal-time moments
of the stochastic fields. For our gating model, the first-order
moments are defined according to

pk(x,t) ≡ E[P (x,t)1k(t)=k], q(x,t) ≡ E[Q(x,t)], (3.3a)

and the second-order moments are

Ck(x,y,t) ≡ E[P (x,t)P (y,t)1k(t)=k], (3.3b)

Rk(x,y,t) ≡ E[P (x,t)Q(y,t)1k(t)=k], (3.3c)

S(x,y,t) ≡ E[Q(x,t)Q(y,t)], (3.3d)

where expectation is taken with respect to realizations σ (t).
Here 1k(t)=k is an indicator function which is equal to one
if k(t) = k and is zero otherwise. Higher-order moments are
similarly defined, for example,

C
(r)
k (x1, . . . ,xr ,t) ≡ E[P (x1,t) · · ·P (xr,t)1k(t)=k]. (3.4)

From a computational perspective, the various moments can
be determined by running multiple realizations σ1, . . . ,σχ of
the population model. Each trial σj yields a probability density
PN

σj
(x,t), whose accuracy will depend on the population size

N . Averaging with respect to the realizations then yields an
approximation of the first-order moment,

p(x,t) ≡ p0(x,t) + p1(x,t) ≈ χ−1
χ∑

j=1

PN
σj

(x,t).

Similarly,

C(x,y,t) ≡ C0(x,y,t) + C1(x,y,t)

≈ χ−1
χ∑

j=1

PN
σj

(x,t)PN
σj

(y,t).

The existence of correlations induced by the switching
environment means that

Ck(x,y,t) �= pk(x,t)pk(y,t),

for example.
In the Appendix, we show how to derive a closed set of

equations for the first and second moments following along
lines analogous to those in [34]. We find that the first-order
moments uk evolve as

∂pk

∂t
= D

∂2pk

∂x2
− γ (1 − k)pk +

∑
m=0,1

Wkmpm, (3.5)

with Neumann boundary conditions at x = 0. Here W is
the generator of the two-state Markov chain underlying the
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stochastic gate:

W =
(−β α

β −α

)
. (3.6)

Moreover,

∂q

∂t
= γp0(x,t). (3.7)

Formally speaking, Eqs. (3.5) are identical to Eqs. (2.11a) and
(2.11b) for the single-particle probability densities pk(x,t).
It follows that we can identify q(x,t) with q(x,t). [Note
that the first-order moments of the population model are
not always equivalent to the probability densities of the
single-particle model, since there is a much wider class of
boundary conditions that one can impose on the population
model (3.1). This reflects the fact that particle conservation
need not hold at the population level. For example, one could
impose a constant nonzero flux of particles at x = 0; see also
the discussion at the beginning of Sec. II.]

Similarly, it can be shown that

∂Ck

∂t
= D

∂2Ck

∂x2
+ D

∂2Ck

∂y2
− 2γ (1 − k)Ck

+
∑

m=0,1

WkmCm. (3.8)

These are supplemented by the initial conditions

Ck(x,y,0) = pk(x,0)pk(y,0) (3.9)

and boundary conditions

∂Ck(x,y,t)

∂x

∣∣∣∣
x=0

= 0 = ∂Ck(x,y,t)

∂y

∣∣∣∣
y=0

, k = 0,1. (3.10)

Equations (3.8) for the second-order moments Ck(x,y,t) are
identical in form to the CK equation that would be written
down for the joint probability density of two Brownian
particles with positions x and y at time t , evolving in the
same randomly switching environment. More generally, C(r) is
related to the joint probability density of r particles. However,
we are mainly interested in the statistics of the absorption
distribution in the large-t limit, in particular, the variance in
the distribution across multiple realizations of the gate. The
latter is given by (assuming it exists)

Var[Q(x)] = lim
t→∞ S(x,x,t) − q(x)2, (3.11)

where q(x) is the solution (2.20), It turns out that the
second-order moment distribution S(x,y,t) is determined by
Rk(x,y,t), which itself couples to Ck(x,y,t); see the Appendix.
That is,

∂Rk(x,y,t)

∂t
= D

∂2Rk(x,y,t)

∂x2
− γ (1 − k)Rk(x,y,t)

+ γ (1 − k)Ck(x,y,t) +
∑

m=0,1

WkmRm(x,y,t),

(3.12)

and

∂S(x,y,t)

∂t
= γR0(x,y,t) + γR0(y,x,t). (3.13)

Equations (3.12) and (3.13) are supplemented by the condi-
tions Rk(x,y,0) = S(x,y,0) = 0 and ∂xRk(0,y,t) = 0. Com-
bining Eqs. (3.11) and (3.13) implies that

Var[Q(x)] = 2γ R̃0(x,x,0) − q(x)2, (3.14)

where R̃(x,y,s) is the Laplace transform of R(x,y,t).
Since equation (3.12) is coupled to the two-point corre-

lation C0(x,y,t), we first solve Eq. (3.8) with Ck(x,y,0) =
δ(x)δ(y)ρk and

∂Ck

∂x

∣∣∣∣
x=0

= ∂Ck

∂y

∣∣∣∣
y=0

= 0.

Proceeding as in Sec. II B, we apply the Laplace transform to
Eq. (3.8), set s = 0, and write it in the matrix form

D�C̃(x,y,0) − A(2γ )C̃(x,y,0) = −e0δ(x)δ(y) (3.15)

for C̃ ≡ [C̃0,C̃1]�. The matrix A(2γ ) is given by Eq. (2.14)
except that γ → 2γ . Following Eq. (2.16), we introduce the
expansion

C̃(x,y,0) = f+(x,y)v+(2γ ) + f−(x,y)v−(2γ ),

which yields the decoupled equations

D�f±(x,y) − λ±(2γ )f±(x,y) = −�±(2γ )δ(x)δ(y). (3.16)

Equations (3.16) can be solved using Green’s functions and
the method of images. Let x ≡ (x,y) and set |x| = r . First,
note that the fundamental solution Gμ of the two-dimensional
modified Helmholtz equation satisfies (in polar coordinates)

∂2Gμ

∂r2
+ 1

r

∂Gμ

∂r
− μ2Gμ = −δ(r).

The solution is given by

Gμ(r) = 1

2π
K0(μr),

where K0 is a modified Bessel function of the third kind.
Next we introduce the source point ξ ≡ (x0,y0) and the mirror
image vectors ξ1 ≡ (−x0,y0),ξ2 ≡ (−x0,−y0), ξ3 ≡ (x0,−y0).
It then follows from the method of images that the Neumann
Green’s function of the modified Helmholtz equation in the
first quadrant of R2 is

Gμ(x,ξ ) = 1

2π
[K0(μ|x − ξ |) + K0(μ|x − ξ1|)

+K0(μ|x − ξ2|) + K0(μ|x − ξ3|)]. (3.17)

Finally, expressing f± in terms of Gμ± , where μ± =√
λ±(2γ )/D, gives

C̃0(x,y,0) = 1

D
{[α − λ+(2γ )]�+(2γ )Gμ+(x,0)

+ [α − λ−(2γ )]�−(2γ )Gμ−(x,0)}. (3.18)

Returning to Eq. (3.12), we now seek to analyze Rk(x,y,t).
Again we apply the Laplace transform and set s = 0 to obtain

D
∂2R̃
∂x2

− A(γ )R̃ = −γ C̃0(1,0)�, R̃ ≡ (R̃0,R̃1)T .

We introduce the decomposition

R̃(x,y,0) = v+(γ )r+(x,y) + v−(γ )r−(x,y),
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FIG. 4. Standard deviation of absorption density Q(x) over
different realizations of the stochastic gate using (3.14). We take
β = 1, γ = 0.1, D = 1, and α varies. The inset magnifies absorption
positions x ∈ [0,10].

with

D
∂2r±
∂x2

− λ±(γ )r± = −γ�±(γ )C̃0

and �±(γ ) given by Eq. (2.18) for e0 = (1,0)�. The solutions
are immediately

r±(x,y) = γ�±(γ )

2
√

λ±(γ )D

∫ ∞

0

× [e−√
λ±(γ )/D|x−ξ | + e−√

λ±(γ )/D|x+ξ |]C̃0(ξ,y,0)dξ,

(3.19)

and

R̃0(x,y,0) = [α − λ+(γ )]r+(x,y) + [α − λ−(γ )]r−(x,y).

(3.20)

In Fig. 4, we use (3.14) to plot the standard deviation of
Q(x) over realizations of the stochastic gate. Interestingly, this
plot shows that the standard deviation of Q(x) is nonmonotonic
in the switching rate α = β for certain values of x > 0.
Nevertheless, we will see in Sec. IV that Q(x) becomes
deterministic in the fast switching limit, and hence its standard
deviation vanishes if α 	 1,β 	 1.

IV. EXPLICIT STOCHASTIC SOLUTION

Our analysis of a population of Brownian particles diffusing
in the same randomly absorbing environment required study-
ing the piecewise-deterministic partial differential equation
(PDE) (3.1). Another way to view this equation is as an
example of a parabolic PDE with a stochastically gated decay
rate. In this section we construct an explicit solution of
this more general class of stochastic PDEs and show how
r-point correlations can be analyzed using previous studies of
stochastically gated compartments. We then relate this analysis
to the particular case of diffusion in absorbing environments.

Suppose P (x,t) satisfies the evolution equation

∂P (x,t)

∂t
= LxP (x,t) − γ [1 − k(t)]P (x,t), x ∈ � ⊂ Rd ,

(4.1)

where Lx is a linear differential operator and k(t) ∈ {0,1}
evolves according to the two-state Markov chain of previous
sections. Equation (4.1) is supplemented by appropriate
boundary conditions on ∂� and an initial condition P (x,0) =
v0(x). We now observe that P can be decomposed as

P (x,t) = e−γ θ(t)v(x,t), (4.2)

where θ (t) is the residence time of k(t) in state 0,

θ (t) ≡
∫ t

0
[1 − k(τ )] dτ,

and v(x,t) is the deterministic solution to the initial boundary-
value problem

∂v

∂t
= Lxv, x ∈ �, (4.3)

with the same boundary conditions and initial condition
v(x,0) = v0(x). With the representation (4.2), we see that
understanding the statistics of P reduces to understanding
the statistics of e−γ θ(t). The latter problem was originally
analyzed by Kubo [40] in the study of spectral line broadening
in a quantum system and subsequently extended to chemical
rate processes with dynamical disorder by Zwanzig [41]. It
has subsequently arisen in other contexts such as modeling
the exchange of particles to and from a well-mixed domain
within the plasma membrane through a randomly opening and
closing channel [42]. Here we apply such methods within the
context of the stochastic PDE. We first note that in the fast
switching limit, α + β → ∞ with α/β fixed, we have that
with probability one,

θ (t) → ρ0t, ρ0 = α

α + β
.

[Note that (ρ0,1 − ρ0)� is the stationary measure of the matrix
W.] Hence, in this fast switching limit we have that with
probability one

P (x,t) → e−γρ0t v(x,t).

That is, for fast switching the problem reduces to the problem
with an effective static decay rate ρ0γ (see also Sec. II B). In
addition to this almost sure limiting behavior, we can use (4.2)
to calculate the r-point correlations of P ,

E

⎡⎣ r∏
j=1

P (xj ,tj )

⎤⎦ =
⎡⎣ r∏

j=1

v(xj ,tj )

⎤⎦E

⎡⎣ r∏
j=1

e−γ θ(tj )

⎤⎦,

(4.4)

for x1, . . . ,xr ,t1, . . . ,tr ∈ [0,∞). For the moment, we do not
restrict ourselves to equal-time correlations (ti = t for all i),
and we focus on the cases r = 1 and r = 2.

First observe that Y (t) ≡ e−γ θ(t) is a piecewise-
deterministic Markov process that satisfies

Ẏ (t) = −γ [1 − k(t)]Y (t).

Hence, the probability density function of Y (t),

Pk(y,t)dy = P(Y (t) ∈ (y,y + dy),k(t) = k),
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satisfies the forward differential CK equation

∂

∂t
P0 = − ∂

∂x
(−γyP0) − βP0 + αP1, (4.5)

∂

∂t
P1 = βP0 − αP1. (4.6)

From Eqs. (4.5) and (4.6), it follows that the first moments of
Y (t),

mk(t) ≡ E[Y (t)1k(t)=k],

satisfy the linear ordinary differential equations (ODEs)

d

dt

(
m0

m1

)
= −A(γ )

(
m0

m1

)
, (4.7)

with A(γ ) given by Eq. (2.14), and the initial conditions,
mk(0) = ρk , assuming P(k(0) = k) = ρk . Hence, we have that(

m0(t)
m1(t)

)
= e−A(γ )t

(
ρ0

ρ1

)
. (4.8)

This equation can be solved by expanding in terms of the
eigenvectors v± (or equivalently diagonalizing the matrix A).
We thus obtain the result

m(t) = �+(γ )e−λ+(γ )tv+(γ ) + �−(γ )e−λ−(γ )tv−(γ ).

(4.9)

Hence, the first moment of P is

E[P (x,t)] = v(x,t)[m0(t) + m1(t)]. (4.10)

To compute the two-point correlation of P , we need to
calculate the two-point correlations of Y ,

m
(2)
kj (t,t0) ≡ E[Y (t)1k(t)=kY (t0)1k(t0)=j ],

for t � t0 � 0 and k,j ∈ {0,1}. It is straightforward to show
that m

(2)
kj (t,t0) satisfies (4.7) with initial conditions at t = t0

given by

m
(2)
kj (t0,t0) = δk,jm

(2)
j (t0),

where δk,j is the Kronecker δ and

m
(2)
j (t) = E[e−2γ θ(t)1k(t)=j ].

Hence, we have that(
m

(2)
0j (t,t0)

m
(2)
1j (t,t0)

)
= e−A(γ )(t−t0)

(
δ0,jm

(2)
0 (t0)

δ1,jm
(2)
1 (t0)

)
.

Moreover, m(2) = (m(2)
0 ,m

(2)
1 )� evolves according to the equa-

tion

d

dt

(
m

(2)
0

m
(2)
1

)
= −A(2γ )

(
m

(2)
0

m
(2)
1

)
, (4.11)

which implies

m(2)(t) = �+(2γ )e−λ+(2γ )tv+(2γ ) (4.12)

+�−(2γ )e−λ−(2γ )tv−(2γ ). (4.13)

Combining these results, the two-point correlations of P are
given by

E[P (x2,t2)P (x1,t1)] = v(x2,t2)v(x1,t1)
∑

j2,j1∈{0,1}
m

(2)
j2j1

(t2,t1),

where t2 � t1 � 0.
The analysis simplifies in the case of the equal-time

correlations

∑
k=0,1

C
(r)
k (x1, . . . ,xr ,t) ≡ E

⎡⎣ r∏
j=1

P (xj ,t)

⎤⎦
=

⎡⎣ r∏
j=1

v(xj ,t)

⎤⎦E[e−rγ θ(t)],

Generalizing Eq. (4.11), we find that

E[e−rγ θ(t)] = m
(r)
0 (t) + m

(r)
1 (t), (4.14)

where

d

dt

(
m

(r)
0

m
(r)
1

)
= −A(rγ )

(
m

(r)
0

m
(r)
1

)
. (4.15)

Hence,

∑
k=0,1

C
(r)
k (x1, . . . ,xr ,t) =

⎡⎣ r∏
j=1

v(xj ,t)

⎤⎦[
m

(r)
0 (t) + m

(r)
1 (t)

]
.

(4.16)

An alternative way to analyze the equal-time correlations is
to derive PDEs for the moments along the lines outlined in
Sec. III and the Appendix. For the general PDE (4.1) we find
that C

(r)
k satisfies the rth-order PDE

∂C
(r)
k

∂t
=

r∑
j=1

Lxj
C

(r)
k −

∑
m

Akm(rγ )C(r)
m . (4.17)

This has a solution of the form

C
(r)
k (x1, . . . ,xr ,t) = v(r)(x1, . . . ,xr ,t)m

r
k(t),

with v(r) satisfying the equation

∂v(r)

∂t
=

r∑
j=1

Lxj
v(r).

The latter has the separable solution

v(r)(x1, . . . ,xr ,t) =
r∏

j=1

v(xj ,t),

and thus we recover Eq. (4.16).
Let us now return to the specific PDE given by Eq. (3.1). In

this case,

v(x,t) ≡ 2√
4πDt

e−x2/(4Dt).

Substituting Eq. (4.9) into Eq. (4.10) and taking the limit t →
∞ then recovers the solution (2.20) for q(x). This follows from
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the Laplace transform

L[v(x,t)e−λt ](s) = 1√
(λ + s)D

e−√
(λ+s)/Dx.

Similarly, using Eq. (4.16) for r = 2 and Eq. (4.13), we see
that

C0(x,y,t) + C1(x,y,t)

= 1

πDt
e−[x2+y2]/(4Dt)[�+(2γ )e−λ+(2γ )tv+(2γ )

+�−(2γ )e−λ−(2γ )tv−(2γ )].

Laplace transforming this equation using the identity

L
(

1

2Dt
e−x2/4Dt−λt

)
= 1

D
K0(x

√
[s + λ]/D)

and setting s = 0 then recovers the solution (3.18). One
possible advantage of the moments methods developed in
Sec. III is that one can determine derived quantities such as
E[Q(x,t)Q(y,t)] by solving the auxiliary Eq. (3.12) for the
equal-time moments Rk(x,y,t). In terms of the direct method
above, one has to evaluate the double integral

E[Q(x,t)Q(y,t)] = γ 2
∫ t

0

∫ t

0
v(x,τ2)v(y,τ1)m(2)

00 ( max(τ2,τ1),

(min(τ2,τ1)) dτ1 dτ2.

Another advantage of the moments method is that it can handle
heterogeneous absorption.

V. HETEROGENEOUS ABSORPTION

A classical problem in the theory of diffusion-limited
reactions is analyzing the effective rate of absorption of
Brownian particles moving in a medium with periodically
or randomly distributed static traps [1,3,5,7]. In cases where
Smoluchowski mean-field theory holds, one can show that
the survival probability of the diffusing particles exhibits
exponential decay at a rate that depends on the concentration
of traps. In other words, the ensemble of traps may be treated
as a uniform (homogenized) absorbing medium. This is the
approach taken in previous sections. Here we turn to the case
of a spatially heterogeneous absorbing medium consisting of
N spatially localized traps at positions xn, n = 1, . . . ,N . For
simplicity, we will assume that the stochastic gating of the
traps is synchronized so that there is a single gating variable
k(t) ∈ {0,1}. If each trap had its own independent gate with
discrete state kn(t) ∈ {0,1}, then switching would be described
by a Markov chain with 2N states.

The population model of Sec. III now evolves according to
the stochastic equation

∂P (x,t)

∂t
= D

∂2P (x,t)

∂x2
− γd [1 − k(t)]

N∑
n=1

δ(x − xn)Pn(t)

(5.1)

for x > 0, with Pn(t) = P (xn,t) and a reflecting boundary at
x = 0. Moreover,

∂Q(x,t)

∂t
= γd [1 − k(t)]

N∑
n=1

δ(x − xn)Pn(t), (5.2)

and Q(x,0) = 0. Note that γd has the units of velocity rather
than inverse time. It follows that we can set

Q(x,t) =
N∑

n=1

Qn(t)δ(x − xn),

with

dQn

dt
= γd [1 − k(t)]Pn(t).

For the sake of illustration, we will focus on the first-
order moment equations for pk(x,t) and q(x,t) defined by
Eq. (3.25a), after dropping the bars. After setting

pk,n(t) = pk(xn,t) = E[P (xn,t)1k(t)=k],

we have

∂pk

∂t
= D

∂2pk

∂x2
−

∑
l=0,1

Wklpl

− γdδk,0

N∑
n=1

δ(x − xn)p0,n(t) (5.3)

and

dqn

dt
= γdp0,n(t). (5.4)

We want to calculate

q∞
n = lim

t→∞ qn(t) = γd

∫ ∞

0
p0,n(τ )dτ = γdp̃0,n(0). (5.5)

Laplace transforming Eq. (5.3) with pk(x,0) = ρkδ(x), we
have

D
d2p̃k

dx2
−

∑
l=0,1

Wklp̃l − sp̃k

= −δ(x)ρk + γdδk,0

N∑
n=1

δ(x − xn)p̃0,n(s), (5.6)

supplemented by the boundary condition

dp̃k

dx

∣∣∣∣
x=0

= 0.

Summing both sides of Eq. (5.6) with respect to k ∈ {0,1}
gives

D
∂2p̃

∂x2
− sp̃ = −δ(x) + γd

N∑
n=1

δ(x − xn)p̃0,n(s), (5.7)

with p̃m(s) = p̃0,m(s) + p̃1,m(s). Introduce the Neumann
Green’s function G(y,x; s) with

D
d2G(y,x; s)

dy2
− sG(y,x; s) = −δ(x − y), x,y ∈ (0,∞),

(5.8)
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and ∂yG = 0 at y = 0. Solving this equation yields

G(y,x; s) = 1

2

√
1

sD
[e−√

s/D|x−y| + e−√
s/D(x+y)]. (5.9)

An application of Green’s theorem then leads to the implicit
equation

p̃(x,s) =
∫ ∞

0
dyG(y,x; s)

×
[
δ(y) − γd

N∑
n=1

δ(y − xn)p̃0,n(s)

]

= G(0,x; s) − γd

∑
n�1

G(xn,x; s)p̃0,n(s). (5.10)

Return to Eq. (5.6) and set k = 0:

D
d2p̃0

dx2
− (s + α + β)p̃0

= −δ(x)ρ0 − αp̃ + γd

N∑
n=1

δ(x − xn)p̃0,n(s). (5.11)

This equation can be solved using the Neumann Green’s
function Ĝ(x,y; s) = G(x,y,s + α + β):

p̃0(x,s) = Ĝ(0,x; s)ρ0 − γd

∑
n�1

Ĝ(xn,x; s)p̃0,n(s)

+α

∫ ∞

0
Ĝ(y,x; s)p̃(y,s)dy.

Finally, substituting for p̃(y,s) using Eq. (5.10) and setting
x = xm, we obtain the matrix equation

p̃0,m(s) = Ĝ0m(s)ρ0 + αĤ0m(s)

− γd

N∑
n=1

[Ĝnm(s) + αĤnm(s)]p̃0,n(s), (5.12)

where Ĝnm(s) = Ĝ(xn,xm; s),

Ĥnm(s) =
∫ ∞

0
G(xn,y; s)Ĝ(y,xm; s)dy, (5.13)

and x0 = 0.
In order to derive a matrix equation for the q∞

n , we note
that in the limit s → 0,

Ĝnm(s) → Gnm(α + β)

and

Ĥnm(s) → Am√
sD

, Am =
∫ ∞

0
G(y,xm; α + β)dy.

Introduce the approximation

γdp̃0,n(s) = q∞
n + Cn

√
s + h.o.t.

where h.o.t. is higher order terms.
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FIG. 5. Absorption density in the case of heterogeneous, gated
absorption. For spatially localized traps at positions xn = n�x for
�x = 0.1 and n = 0, . . . ,100, the curves are the effective absorption
density, q∞

n /�x with q∞
n in (5.16). We take β = γd = 0.1, D = 1,

and α varies.

Substituting into Eq. (5.12) gives

q∞
m = αγdAm√

sD

[
1 −

N∑
n=1

q∞
n

]

+ γd

[
G0m(α + β)ρ0 −

N∑
n=1

Gnm(α + β)q∞
n

]

− αγdAm√
D

N∑
n=1

Cn + h.o.t. (5.14)

The singular term vanishes provided that we impose the
normalization

1 =
N∑

n=1

q∞
n , (5.15)

and equating the O(1) terms leads to the matrix equation

N∑
n=1

Amnq
∞
n ≡ q∞

m + γd

N∑
n=1

Gnm(α + β)q∞
n

= γdG0m(α + β)ρ0 − �Am, (5.16)

with the unknown constant

� = αγd√
D

N∑
n=1

Cn

determined by the normalization condition (5.15).
Solving (5.16) numerically, Fig. 5 shows that gated ab-

sorption can mitigate attenuation in the case of spatially
heterogeneous traps, just as in the case of a spatially uniform
trap considered in previous sections.

VI. DISCUSSION

In this paper we analyzed a population of noninteracting
Brownian particles moving in a common environment with
stochastically gated absorption. We showed that the stochastic
gating mitigated the spatial decay of the steady-state absorp-
tion density as a function of distance from the source of
particles. If we interpret absorption in terms of the delivery of
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diffusively transported particles to targets along the dendrite or
axon of a neuron, then gating provides another mechanism for
synaptic democracy [22]. Similar considerations would hold if
transport had an active component in the form of an advection
term. One of the important consequences of a common
switching environment at the population level is that there
are statistical correlations in the distribution of particles with
respect to different realizations of the absorbing environment.
An analogous result holds for diffusion in bounded domains
with stochastically gated boundary conditions [34–37] and
populations of regulatory gene networks subject to the same
switching environment [43,44].

One of the major simplifications of our analysis was to
take the absorption rate to be spatially uniform. Although
we did also consider an example of spatially heterogeneous
absorption, involving N spatially localized traps, we assumed
for simplicity that the traps opened and closed simultaneously
(possibly due to some external drive). Although one could
formulate the corresponding stochastic dynamics in the case of
a population of Brownian particles diffusing in a domain with
independently switching localized traps, the analysis rapidly
becomes unwieldy; see also the recent study of stochastically
gated gap junctions [37].

At the level of a single Brownian particle switching confor-
mational states, one could extend the analysis in Sec. II to a
variety of trapping scenarios, including higher-dimensional
bounded domains with a distribution of static or dynamic
traps within the domain or on the boundary of the domain.
Indeed, we have previously shown how the notion of synaptic
democracy extends to higher-dimensional domains with radial
symmetry and reversible traps [25]. Generalizing the popu-
lation level analysis of Secs. III and IV, however, requires a
deeper understanding of possible mechanisms underlying the
physical gating of trapping regions or inactivation domains,
resulting in a common switching environment shared by all the
particles. Only then can one make predictions regarding the
nature of correlations induced by the switching environment.
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APPENDIX

In this appendix we extend the moment equation analysis
of previous work [34] to the case of gated absorption. The
first step is to spatially discretize the stochastic FP equation
(3.1) and the auxiliary equation (3.2), yielding a random walk
model. Introduce the lattice spacing � and set x = j�,� ∈ Z+.
Let Pj (t) = P (j�,t) and Qj (t) = Q(j�,t). This yields the
piecewise-deterministic system of ODEs

dPi

dτ
= �Pi − γ [1 − k(t)]Pi, i � 1, (A1)

dQi

dτ
= γ [1 − k(t)]Pi, i � 1, (A2)

with Qj (0) = 0 and Pj (0) = δj,1. Here � is the discrete
Laplacian with

�Pi = D

�2
[Pi+1 + Pi−1 − 2Pi]

for i � 2 and

�P1 = 2D

�2
[P2 − P1].

The last equation implements the reflecting boundary condi-
tion at x = 0.

Let P(t) = (Pj (t), j � 1) and Q(t) = (Qj (t), j � 1), and
introduce the probability density

Prob{P(t) ∈ (P,P + dP),Q(t) ∈ (Q,Q + dQ),k(t) = k}
= �k(P,Q,t)dPdQ. (A3)

The probability density � evolves according to the following
infinite-dimensional CK equation:

∂�k

∂τ
= −

∑
i�1

∂

∂Pi

{[�Pi − γ (1 − k)Pi]�k(P,Q,t)}

−
∑
i�1

∂

∂Qi

[γ (1 − k)Pi�k(P,Q,t)]

+
∑

m=0,1

Wkm�m(P,Q,τ ), (A4)

where W is the generator of the two-state Markov process.
Since the CK equation (A4) is linear in the Pj and Qj , it
follows that we can obtain a closed set of equations for the
first-order (and higher-order) moments of the density �k .

1. First-order moments

Let

Pk,j (t) = E[Pj (t)1k(t)=k] =
∫

�k(P,Q,t)PjdPdQ, (A5)

and

Qj (t) = E[Qj (t)] =
∫

�(P,Q,t)QjdPdQ, (A6)

where � = �0 + �1, and∫
F (P,Q)dPdQ =

⎡⎣∏
j

∫ ∞

0
dPjdQj

⎤⎦F (P,Q).

Multiplying both sides of Eq. (A4) by Pj and integrating with
respect to P,Q gives [after integrating by parts and assuming
that �n(P,Q,τ ) → 0 as P,Q → ∞]

dPk,i

dt
= �Pk,i − γ (1 − k)Pk,i +

∑
m=0,1

WkmPm,i . (A7)

If we now set Vk(j�,t) = Pk,j (t) and retake the continuum
limit � → 0, we recover the first-order moment equations
(3.5). Similarly, multiplying both sides of Eq. (A4) by Qj ,
integrating with respect to P,Q and summing over k gives

dQj

dt
= γP0,i . (A8)
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Therefore, setting q(j�,t) = Qj (t) and retaking the continuum
limit yields Eq. (3.7).

2. Second-order moments

We now define the second-order moments

Ck,ij (t) = E[Pi(t)Pj (t)1k(t)=k]

=
∫

PiPj�k(P,Q,t)dPdQ,

Rk,ij (t) = E[Pi(t)Qj (t)1k(t)=k]

=
∫

PiQj�k(P,Q,t)dPdQ,

and

Sij (t) = E[Qi(t)Qj (t)] =
∫

QiQj�(P,Q,t)dPdQ, (A9)

Multiplying both sides of the CK equation (A4) by Pi(t)Pj (t)
and integrating with respect to P,Q gives (after integration by
parts)

dCk,ij

dt
= �(2)Ck,ij − 2γ (1 − k)Ck,ij +

∑
m=0,1

WkmCm,ij ,

(A10)

where �(2) is the two-dimensional discrete Laplacian:

�(2)Fij = D

�2
[Fi+1,j + Fi−1,j − 2Fij ]

+D

�2
[Fi,j+1 + Fi,j−1 − 2Fij ].

If we now set Ck(i�,j�,t) = Ck,ij (t) and retake the con-
tinuum limit � → 0, we recover the second-order moment
equations (3.8). As expected, these equations do not couple to
moments of Qj (t). Similarly, multiplying both sides of the CK
equation (A4) by either Pi(t)Qj (t) or Qi(t)Qj (t), integrating
with respect to P,Q, and summing over k in the latter case
gives, respectively,

dRk,ij

dt
= �iRk,ij − γ (1 − k)Rk,ij

+ γ (1 − k)Ck,ij +
∑

m=0,1

WkmRm,ij

and
dSij

dt
= γ (R0,ij + R0,j i). (A11)

Here �i indicates that the discrete Laplacian acts on the i

variable. These yield Eqs. (3.12) and (3.13) in the continuum
limit. (Note that, in the above derivations, we have assumed
that integrating with respect to P,Q and taking the continuum
limit commute. One can also avoid the issue that P,Q are
infinite-dimensional vectors by carrying out the discretization
over a finite domain [0,L] and taking the limit L → ∞ once
the moment equations have been derived.)
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