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Delays and stochasticity have both served as crucially valuable ingredients
in mathematical descriptions of control, physical and biological systems.
In this work, we investigate how explicitly dynamical stochasticity in
delays modulates the effect of delayed feedback. To do so, we consider a
hybrid model where stochastic delays evolve by a continuous-time
Markov chain, and between switching events, the system of interest evolves
via a deterministic delay equation. Our main contribution is the calculation
of an effective delay equation in the fast switching limit. This effective
equation maintains the influence of all subsystem delays and cannot be
replaced with a single effective delay. To illustrate the relevance of
this calculation, we investigate a simple model of stochastically
switching delayed feedback motivated by gene regulation. We show that
sufficiently fast switching between two oscillatory subsystems can yield
stable dynamics.

1. Introduction

Mathematical models with delays have served profoundly useful in capturing
the behaviour of complex systems in biology [1-7], networks [8] and control
[9]. One notable example is delayed negative feedback control of genetic net-
works, especially transcriptional feedback [10-12]. These systems, such as in
nF-xB [13] or p53 [14] signalling, share the canonical set-up of some signal
that auto-inhibits its own production with delayed feedback. Such delays
typically arise from several molecular events that must occur in sequence
[15]. The behaviour of these models for a fixed 7 is rich but well understood:
the amount of delay in feedback crucially determines stability or instability
(often to oscillations) in the system [1,16].

At the scale of molecular machinery associated with genetic regulation,
dynamics are also known to be richly stochastic [17,18], with inherent noise
in the counts of individual molecules, but also disparate timescales of pro-
motion or inhibitory factors binding and unbinding [19]. Putting these two
pieces together, there is a natural interest in understanding the emergent
dynamics in systems with delayed feedback and stochasticity in biological
[20-28] and physical systems [29,30].

There have been many insightful investigations into systems with
distributed delay. In these models, a delay is continuously drawn from some
probability distribution thought to arise from stochasticity or uncertainty in
the delay [31,32]. Distributed delays in negative feedback can produce
interesting behaviours, including bimodality [33] and surprising stability
changes [11]. However, it remains unclear to what extent it is possible to
relate distributed delays to more explicit dynamical descriptions of the under-
lying process that governs them. Others have considered discrete-time models
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or so-called semi-discretized where the delays themselves
switch at discrete times [34-38]. Such models may be
appropriate for control systems but unrealistic for
biological systems where the switching is driven by
stochastically timed chemical events [39]. Instead, we
return to very early models where the delays themselves
follow a continuous-time Markov process [40—-42]. While
there are rigorous works investigating the long-time stab-
ility of such models [43-46], these arguments are primarily
based on Lyapunov functions that are challenging to find
for any specific model.

In this work, we investigate the dynamics of a model
that stochastically switches between delays at exponential
rates. That is, we consider a stochastic hybrid delay system.
The delays evolve via a continuous-time Markov chain,
and in between these transitions, the system evolves by a
deterministic delay equation. Our primary contribution is
the derivation of an effective quasi-steady-state delay
system in the limit of fast stochastic switching. Perhaps sur-
prisingly, we find that nonlinear systems do not converge
to one with a single effective delay but retain the effects
of all delays in the original subsystems. Using this compu-
tation, we explore the behaviour of a classical model of
delayed negative feedback [11,47—49]. With stochastic switch-
ing, we show that switching between two oscillatory
subsystems can stabilize the system. Altogether, our results
add clarity and intrigue to the picture of how stochastic
switching and delays intertwine in Dbiological systems,
especially those containing negative feedback as seen in
genetic regulation.

2. Simple model of delayed negative feedback

We begin with a simple model of delayed negative feedback
with a single fixed delay 7 and review the role delay plays in
destabilizing the fixed point of a dynamical system. We are
far from the first to consider such a model or its variants
[11,12,48,49], but we include a brief investigation here for
the sake of self-containment of our work. Thereafter we
demonstrate that allowing for stochastic switching between
distinct delays stabilizes the fixed point, even when all
delays involved are past the Hopf bifurcation point of the
non-switching system.
Let y(t) be a scalar field evolving according to

%:pw—wﬂyu—m 1)

Here, y(t) could represent the concentration of a protein that
is constitutively produced at a rate I and inhibits its own pro-
duction. The first order rate constant y describes the natural
degradation rate of the substance y. We take the weight w
to describe the strength of the auto-inhibition based on
some form of Michaelis—-Menten kinetics. Therefore, f can be
any function that is monotonically increasing and finite at
infinity. For concreteness, we take

yﬂ
fO) =%y
Equation (2.1) describes a simple model for delayed
negative feedback—the substance being produced inhibits
its own production following a non-zero but finite time
delay .

2.1. Hopf bifurcation
Setting the time derivative equal to zero in equation (2.1)
yields an equilibrium solution y* satisfying

W twf(y) =1 (22)
To understand how 7 destabilizes the equilibrium, we per-
form a linear stability analysis. Linearizing equation (2.1)
around y* yields

W af (4 ult )

where u(t) =y(t) — y*. This has the solution u(t) = K e* with 1
determined from the eigenvalue equation

A= —y—wf () e . (2.3)

In accordance with standard analysis of delay differential
equations, we determine the necessary conditions for the
emergence of a time-periodic solution via a Hopf bifurcation
by setting A=iw in equation (2.3). Equating real and
imaginary parts gives the following conditions for a Hopf
bifurcation:

o = wf (y*) sin (wr)

_'Y:wf,(y*)cos (wT) ) (24)
- % = tan (w7)

It is clear that these conditions cannot be satisfied in the
absence of delay (r=0). Indeed, setting 7= 0 renders equation
(2.1) a one-dimensional flow, which cannot have oscillations.
On the other hand, for 7> 0, there exist (@, 7.) satisfying con-
ditions (2.4). When 7 is increased past 7., a pair of complex
conjugate eigenvalues crosses the imaginary axis. Although
this is not sufficient to guarantee the emergence of a stable
periodic solution via a supercritical Hopf bifurcation for
7> 1, the existence of stable oscillations beyond the Hopf
bifurcation point can be verified numerically, with examples
seen in figure 1. In the simulations shown, the parameters
chosen are =10, K=9.5, y=1, n=4 and w=9.5. These will
be used elsewhere throughout the manuscript unless noted
otherwise. For these parameter values, 7.~09. The two
delays in figure 1 correspond to values of 7 above and
below this bifurcation, 7=0.6 and 7=1.2, respectively.

Hence, we have established the crucial role delay plays
in the destabilization of equilibria corresponding to
delayed negative feedback systems. We next demonstrate
the curious result that allowing 7 to randomly switch between
two values—both past z—results in the stabilization of
the equilibrium.

2.2. Stochastic switching of delays

In biological and biophysical models, delays often manifest as
a coarse-grained description of several processes which,
cumulatively, require time. Hence, many details underlying
biophysical processes are overlooked in fixed-delay systems.
To capture finer dynamics, biophysical models incorporate
delays that vary according to a probability distribution or
evolve via some prescribed dynamics. We emphasize the
contrast of this model set-up to those such as in [26,28],
where stochastic switching of the system occurs (due to
inhibitor binding and unbinding) but the delay, if included,
remains fixed.
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Figure 1. Simple model of delayed negative feedback. (a) Schematic of biological motivation for equation (2.1): a protein leads to inhibiting its own production
with delay 7, and also degrades. (b) Two solutions of equation (2.1) for different values of z. For long delays, oscillations occur, and for short, steady state is
achieved. The threshold Hopf bifurcation between these behaviours is described by equation (2.4).

Here, we implement stochasticity in delay equations
by taking the delay to evolve in time according to a
continuous-time discrete Markov process. Explicitly, consider
a general autonomous delay differential equation of the form

= Gl y(t - ). 25)

Here y(t) is the same scalar field and 7(t) varies in time sto-
chastically between N € N states. Let 7; denote the delay
corresponding to the ith state so that re{r, 7, ..., =5} at
any given time ¢, and let Q(z;, t) denote the probability that
7=7; at time f. The dynamics of 7 are then completely
characterized by the master equation

dQ N

— (7, t) = Z Wi—iQ(Tj, £) = WijQ(, t), (2.6)

dt j=1j#i

where W;_,; denotes the propensity of the transition 7; — z;.
Equations (2.5) and (2.6) together form a so-called stochastic
hybrid system—a system wherein the state of the system evolves
stochastically, but within each state evolves deterministically.
Such systems are also called a piecewise deterministic Markov
process (PDMP) [19,39,50].

2.3. Stochastic delayed negative feedback

We now implement stochastic switching in equation (2.1) by
taking 7 to evolve according to a two-state Markov process,
t€ {1, ©} with Wi_, = e« and W,_.; = B so that

% = BQ(m, t) — aQ(m, 1)

=B—(a+PB)Q(m, 1) (2.7)

The last equality follows from the fact that Q(zy, t) + Q(z, t) =
1 for this model. When 7 is fixed, equation (2.1) has a well-
defined Hopf bifurcation point at 7= 7. Indeed, for 7y, 7 >
7. substituted into equation (2.1), the system admits a limit
cycle with amplitude and frequency determined by the corre-
sponding delay. Numerically simulating equation (2.1) with
switching given in equation (2.7) indeed shows dynamics
wherein the solution jumps between limit cycles (see
figure 2b). However, in many situations, transitions between
states of a PDMP are fast relative to the other dynamics of
the system. Simulations of the stochastic hybrid system
with 71, >7 and a=a/e and B=B/e for 0<e <1
show that the system contracts to the equilibrium (see
figure 3). This result is not intuitive.

3. General formulation

To understand what causes the stabilization of the fixed point
with fast stochastic delay switching, we consider a microscopic
model for delayed negative feedback. We begin with a delayed
master equation [51] and then invoke a van Kampen expan-
sion to derive a Smoluchowski equation for the probability
density of the stochastic variable undergoing delayed negative
feedback. We begin by writing the master equation analogue
of equation (2.1) with 7 undergoing a continuous-time discrete
Markov process with N states: {ry, 7, ..., 7n}.

Let d(f) € N be a random variable whose dynamics are
governed by the reactions delineated by equation (2.1).
Thus, d(t) could represent the number of translated protein
molecules. Let P(m, t, 7) be the probability that d=m at
time ¢ and that the current delay value is 7. The dynamics
of P(m, t, 7) can be written as

W =I(P(m —1,t, ) — P(m, t, 7))

— y(mP(m, t, ;) — (m+ 1)P(m+1,¢, 7;))

N
Mn
_w (Z Z W(P(m, b1 M, E— T, 7))

=1 M=1

—Pm+1,t,7; M, t—m, ’T]')))

N
+ Wk*,jp(m, tr Tk) - Wiﬂkp(mr tr Ti)-
k=1k#i

(3.1)

The first two terms correspond to constitutive protein
production and natural degradation, respectively. The tran-
sitions between distinct delay values are captured in the
last two terms of equation (3.1). The delayed negative feed-
back manifests in the middle terms of equation (3.1) and
consists of the joint probabilities P(m, t, 7; M, t—1;, 7)) of
having m protein molecules at time t while r=7;, and M
protein molecules at time ¢ — 7; while 7= 7;. Asserting that M
protein molecules must exist at time f — 7; means that delayed
negative feedback can occur only if protein molecules exist to
cause the negative feedback. Equation (3.1), therefore,
describes a non-Markovian process, since the value of d(t)
depends on the value of d(t — 7;). Thus, equation (3.1) is not
closed on the level of one-time quantities. Indeed, to deter-
mine the dynamics of the joint probability distributions,
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Figure 2. Delayed negative feedback model with stochastic switching. (a) Schematic for the biological motivation of the model. A protein with concentration y(t)
inhibits its own production with delay that now stochastically switches between 7, 7, at exponentially distributed times. (b) lllustrative simulation of the system,
here with relatively slow switching & = 10. In the red regions, the delay state is 7; =3 and in the blue, 7, =1.
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Figure 3. Stochastic realizations of the switching delayed feedback system
y(t) described by equation (3.2) for increasingly fast switching speeds. In
the top panel, slow switching (e = 5) yields richly stochastic solutions. In
fast switching (¢ = 0.1) in the bottom panel, trajectories converge to an
effective deterministic solution ye(t) described by equation (4.2).

one needs to have information about three- and four-point
correlations. The result is an infinite hierarchy of equations.
Following a common approach [52,53], we assume the prob-
ability distributions for the number of protein molecules at
distinct times are independent so that P(m, t, 7; M, t—1,
7)) = P(m, t, 7;)P(M, t — 1;, 7j). We refer the reader to the classi-
cal work of Frank [54,55] or the more recent [56] for further
discussion on this approximation.

Unfortunately, little analysis can be performed on equation
(3.1). To make progress, we follow arguments similar to those
in [57] and invoke the van Kampen expansion by setting
x=m/N and Taylor expanding terms in equation (3.1) to
O(N™"). Here, N represents the maximum number of trans-
lated protein molecules possible, as determined by the physics
of the system. We obtain the following Chapman-Kolmogorov
equations, as known for stochastic delay systems [56,58]:

o8 =~ (0= i 1)

dx
1 ©op;i wé" o
|, o s et - e

=1

-

+ Wiipk(x, t) — Wi_kpi(x, t), (3.2)

#1

\MZ

.

k=1

where pi(x, t)=p(x, t, 7). The terms inside the summation
and integral evaluate to the expected value of the Hill
function, giving

api o 1 8 i .
E— N8x( I rx wK11+/\/11)p7(xlt)>
N
+ Z Wiipr(x, t) = Wiepi(x, t), (3.3)
k=1k#i
where

[E(f")zrs
Kt @)~ Ky xp

Here, y; is the value of the delayed variable ¢ yielding the
expected value of the Hill function. It is uniquely identified
because the Hill function is injective. We point out that equation
(3.3) is a function of three independent variables: (x, y;, t). Abus-
ing notation slightly, we now set p;(x, t) =p(x, x;, ).

To determine why fast switching between delays stabil-
izes the fixed point of equation (2.1), we next must consider
the limit where transitions between discrete delays are fast.

3.1. Fast switching limit

To consider the fast switching limit and derive the effective
equation governing the dynamics of delayed negative feed-
back, we re-scale all transition propensities as
Wij— 8’]W,gj, with 0 <e <« 1. The effective equation
manifests as a perturbation from the stationary measure of
the Markov transition matrix governing the switching
between delays. It will provide an approximation to the
mean dynamics of equation (3.3). First, we rewrite equation
(3.3) in matrix-vector format:

1) =~ Alp) +L(p)), (34)
where
pix, t) Li(p(x, £))
p2(x, t) L2(p2(x, £))
=l =] T
pn(x, t) Ln(pn(x, 1))

and
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- ZkN¢1 Wik Wi
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A= W]H3 WZ—>3
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The linear operators L; act upon any sufficiently smooth
function F by

__0 X
o3 (- moeiio))

The co-kernel of A is spanned by the N-dimensional vector

and the kernel of A is spanned by the N-dimensional vector
[¢)=(¢1, ¢, ..., #n)", whose entries, in general, will be
determined by specific relations between the transition pro-
pensities and satisfy (yl¢)=1. Indeed, |¢) is the invariant
measure of the continuous-time Markov chain governing
the jumps between delays.

Let g=(ylp) and lw)=Ip)—qglg) so that g is the
component of |p) in the co-kernel of A and lw) is in
the orthogonal complement. Applying (y| to both sides of
equation (3.4) gives

%~ (il + 4. (35)

Substituting |p) = lw +g¢) into equation (3.4) and using the
fact that |¢) is in the kernel of A, we obtain

0

3 =£AIW> + (v = &) YDL([w + 9)), (3.6)

where [y is the N x N identity matrix. Introduce the expansion

|w) = [wo) + efwr) + O(e?)

and substitute into equation (3.6). Collecting O(e™!) terms
gives Alwp) = 10) » lwpy) = 10). Because we are only inter-
ested in the mean dynamics and not the fluctuations about
the mean, we need not attempt to calculate the higher-order
terms. We hope to explore this in future work.

Substituting the leading-order term for | w) into equation
(3.5) gives the Smoluchowski equation for the probability
density q(x, x, t) for a protein undergoing delayed negative
feedback at time ¢,

0q

R AT I
where x= (x1, X2, ---, xn)- Here, g(x, x, t)Ax =P(y(t) €
(x, x+Ax)) + O(Ax*) and q(x, x, DAy, = P(y(t—m) €

(xi, Xi + Ax;)) + O(Ax?). In words, equation (3.7) says that
the leading-order effective dynamics evolve via the weighted
average of the different subsystems, where the weight is
determined by the stationary distribution of the underlying
Markov chain controlling switching. An important caveat
appears: that such a stationary distribution exists. For all
examples within the realm of models of genetic feedback,
we anticipate this to be the case, but the breakdown of this
assumption may be of future mathematical interest.

W3H1 WNﬂl
Wi 2 W2
N
=2 k23 Wik Wn-3
: NE
Ws_.n — D ken Wik

Another area of mathematical interest is that equation (3.7)
describes the dynamics of g(x, x, t) with a multivariate Smolu-
chowski equation, therefore assuming that the current state of
the random variable is independent of its value at all previous
times. It is a Markovian description of a non-Markovian pro-
cess—the fact that this is a delayed negative feedback system
necessarily renders it non-Markovian. We find that equation
(3.7) is a good approximation to the non-Markovian process in
the fast switching limit (see figure 3d). We take this as evidence
that the independence assumption we made works well in the
fast switching limit. We hope to quantify this approximation
and precisely determine where it breaks down in future work.

One notable feature of the structure of the effective
dynamics (3.7) is that the system cannot be described by a
single effective delay. Rather, the leading-order dynamics
evolve by the simultaneous influence of all delay subsystems
in the fast switching limit.

4. Delayed negative feedback again

We now invoke equation (3.7) and apply it to the specific
example discussed in §2.3. In this case, the resulting
Chapman-Kolmogorov equations are

0 0
o a1 neen)

—api(x, t) + Bpa(x, t)

aﬂ:*i(of wcfme’me)pz(x t))

ot ox
— Bpa(x, B).

and

+ api(x, t)
Here, (wl =(1, 1) and

H=ci5(5)

so that the resulting Smoluchowski equation is

0q B 0 X
E’_[Haa_x((I L wKn+X")L7(x’X’t))

a 0 1
7ﬁ+aa((17’yxiw1<nﬁ%xg)q(xr X t)) (41)

Thus, the mean dynamics of the protein undergoing delayed
negative feedback is given by the kinetic equation

B wye(t—m)"
B+ aK" 4 yess(t — 11)"
_«a wyeff(t — Tz)n

B + a K"+ yeff(t — 7'2)" ’

dyef
a =1 — YWes —

(4.2)

The stability of this averaged two-delay system can surpris-
ingly display behaviour distinct from either of the two
subsystems, as we show in the next section.
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Figure 4. Bifurcation structure for the effective delay equation found in (4.2).
In the heatmap, the maximum of the power spectrum S(w) is shown. The
dashed boundary lines for the two-delay system correspond to the linear
stability analysis in equation (4.3). The dotted lines correspond to the
Hopf boundary for a single delay equation (2.4). The star shows the
choice of delays used elsewhere unless noted otherwise. For these delays,
the oscillations of each subsystem are stabilized by sufficiently fast switching.
Symmetric transitions are considered ot =1, S=1 50 only 7; < 75 need be
considered.

4.1. Stabilization via stochastic switching

Setting the time derivative equal to zero in equation (4.2) and
solving for the equilibrium gives the same solution y* as
obtained from equation (2.2). The linearization of equation
(4.2) about y* yields

wa

a+ B

dw_ _ __wB
a- ™ a+ B

fyult—m)—

'y ult — )
where u(t) = ye(t) — y*.

As in §2.1, we invoke the ansatz u(t)=A e* and deter-
mine A from the auxiliary equation

_ uB
Y aip

wa

A=— —
a+ B

flr)em - L py e

Setting A = iw yields the following conditions for a Hopf bifur-
cation in equation (4.2):

w= waiﬁf,(y*) sin (wT) +w% "(y*) sin (o)
—y=wo Bf’(y*) cos (wT) + wﬁ "(y") cos (wm2)

w  asin(on) 4+ Bsin (on)

Y  a@cos(wm) + Bcos (wTy)

(4.3)

In figure 4, we show the locus of Hopf bifurcation points in
parameter space for equation (4.2) and compare it with the
Hopf bifurcation points for the single delay equation given
in equation (2.1). We can see that there are regions of par-
ameter space wherein 7; and 7, are larger than the single
delay critical Hopf value but the system continues to reach
the fixed point. Hence, the fast switching between delays in
the stochastic system causes the effective behaviour of the

system to behave as if the feedback followed two distinct
delay values simultaneously. The presence of multiple
delays increased the range of delay values for which the
fixed point was stable.

When switching is not fast, then the increased stabiliz-
ation of the fixed point is not observed. Although it is
challenging to analytically investigate this scenario, numeri-
cal investigation via stochastic simulation is straightforward
and can be seen in figure 5. Explicit stochastic simulations
are performed by sampling the continuous-time Markov
chain and solving the delay differential equation between
these events. The system is simulated for te [0, 100], and
over the window t €[90, 100], the minimum and maximum
values are taken, as presumed magnitudes of any oscillations
after the transient portions have decayed. As waiting times
are increased (e large), the system spends enough time in
each delay state so that the effective dynamics follow a
single delay equation for the duration of time in that state.
Periodic solutions corresponding to the delay of the state
emerge. As the waiting time is decreased (e small), the effects
of the second delay term emerge and the stabilization of the
fixed point is observed (see figures 3 and 5).

5. Conclusion

We summarize the main contributions of the manuscript as
follows. Most generally, we have derived an effective delay
equation in the limit of fast switching between subsystems
with different delays that evolve via a continuous-time
Markov chain. A priori, it is not clear whether the behaviour
when rapidly switching between systems can be replaced by
one effective delay. Here, we answer that possibility in the
negative for nonlinear systems, similar to the semi-discretized
case [37]. We used this result to investigate a classical model
of delayed negative feedback with a new twist of stochastic
switching between two delays. In our stochastic model, we
showed that sufficiently fast stochastic switching between
two delays stabilizes the system where each delay alone
produces oscillations.

Our results sit within broader biological and mathemat-
ical contexts. First, we note the relation to the literature on
distributed delay systems, especially in models of genetic
feedback. The effective dynamics derived here arising in the
fast switching limit (4.2) are exactly the form of distributed
delay descriptions of genetic feedback considered elsewhere
[23,31,59]. We have, therefore, provided further mechanistic
motivation for the inclusion of these distributed delay
systems. We show that a Hopf bifurcation in the total switch-
ing rate occurs, indicating that fast switching and slow
have fundamentally different behaviour. This nuance in
timescales of stochasticity does not exist in descriptions
with distributed delays.

Stochastically switching delays add a new vignette
to the broader theme of stochasticity in genetic feedback.
Importantly, we consider stochasticity only in the delay to
emphasize its impact on the behaviour of the system. This
is in contrast with other studies where stochasticity is
included in genetic feedback in other ways and new beha-
viours appear. For instance, molecule counts in the genetic
machinery are low enough to justify exploring demographic
fluctuations [21]. Demographic noise can destabilize oscil-
lations [27], whereas distributed delays can sharpen them
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Figure 5. Bifurcation structure of the stochastically switching delay system as a function of the overall switching rate . Each circle is a stochastic realization, with
500 total per parameter set. (a) The maximum and minimum values over a time window in stochastic simulation show that as switching gets slower, oscillations
emerge. Solid lines represent the oscillation peaks for the single delay subsystems with corresponding delays. (b) The peak of the power spectrum max,, |S(w)| also
demonstrates a subcritical Hopf bifurcation parametrized by the switching rate e.

[60]. It is, therefore, of future interest to investigate how sto-
chastic switching of delays and demographic fluctuations
intertwine. A natural starting point would be similar investi-
gations for non-delay systems, [61], but we anticipate further
challenges due to the hierarchy of multi-point correlations for
stochastic delay systems as discussed in [54-57]. Other
studies also include stochastic switching with delays arising
from binding and unbinding of promoters [26,28] producing
bursting behaviour. These models have rich analytical tract-
ability but do not include different delays. It remains to be
explored whether these calculations can be extended to
different delays, as considered here. To further the biological
relevance, it is also pressing to develop a more mechanistic
explanation of how stochastic switching of delays may
arise. One intriguing direction is the emergence of stochastic
switching from dual delay feedback pathways, such as in
NF-«B signalling [49,62].

Lastly, on the purely mathematical side, our model and
analysis add to the mosaic of stochastic systems that behave
fundamentally differently than their deterministic counter-
parts or subsystems. Specifically, our results first add to a
long history along the theme of how noise can stabilize sys-
tems [11,31,63-65]. Secondly, they provide another example
of how stochastic switching can result in unexpected behav-
iour of stable solutions to the corresponding non-switching
ODEs and PDEs [66-69]. Although it may seem restrictive
that we consider a Markov chain model by which the
delays evolve, an arbitrary delay distribution may be con-
structed via the theory of phase-type distributions [70]. We
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